
Distr. 
LIMITED 
E/ESCWA/SD/2019/TP.4 
21 March 2020 
ORIGINAL: ENGLISH 

Economic and Social Commission for Western Asia (ESCWA) 

 

 

 

"A short guide for small area estimation in household surveys: 
Illustration to poverty mapping in Palestine with expenditure 

survey and census data" 

Isabel Molina Peralta and Eduardo García Portugués 

2019-08-04, v1.0 

 

 

 

 

United Nations 

Beirut, 2019 

 

 
________________+ 

Note: This document has been reproduced in the form in which it was received, without formal editing. The opinions expressed 
are those of the authors and do not necessarily reflect the views of ESCWA. 

 
20-00112 
  



2 
 

Acknowledgment 
 

This report was prepared by Isabel Molina Peralta and Eduardo García Portugués 

(both at the University Carlos III de Madrid) , using the data files prepared by Mr. Jawad 

Saleh from the Palestinian Central Bureau of Statistics (PCBS) and Mr. Nathan Reece from 

the Statistics Division of the Economic and Social Commission of Western Asia (ESCWA), 

under the supervision of Marwan Khawaja, Chief Demographic & Social Statistics Section, 

ESCWA Statistics Division  

 

An earlier version of the report was presented at the “Regional Workshop on 

Poverty Measurement in Arab Countries”, held in Tunis - Tunisia during the period 23-25 

July 2019 and the “Regional Workshop on the Use of Census Data for Development 

Planning and Scientific Research in Arab Countries” held in Rabat, Kingdom of Morocco 

during the period 1-3 October 2019. We acknowledge the helpful comments from the 

participants during these two workshops.   

 

The data files used in preparing this report were provided by the Palestinian Central 

Bureau of Statistics (PCBS).    

  



3 
 

Table of Contents 
Summary ........................................................................................................................................................ 4 

1- The disaggregation problem ............................................................................................................. 5 

1.1 Description of the problem ......................................................................................................... 5 

1.2 Methodologies to circumvent the disaggregation problem ........................................... 6 

Indirect estimation methods ......................................................................................................... 6 

Area-level models .............................................................................................................................. 6 

Unit-level models ............................................................................................................................... 7 

Best linear unbiased predictor ..................................................................................................... 8 

Further reading .................................................................................................................................. 8 

2- Estimation methods .............................................................................................................................. 9 

2.1 Direct estimators ............................................................................................................................. 9 

Horvitz–Thompson estimator ...................................................................................................... 9 

Hájek estimator ............................................................................................................................... 10 

2.2 Indirect estimators ...................................................................................................................... 11 

Fay–Herriot model ......................................................................................................................... 11 

ELL method ....................................................................................................................................... 14 

EB method ......................................................................................................................................... 15 

3- Application: Poverty mapping in Palestine ........................................................................... 198 

4- Final remarks and recommendations ......................................................................................... 34 

References ............................................................................................................................................... 366 

 

  



4 
 

Summary 

This report introduces the problem of disaggregation of statistical data, known in the 
literature as the small area estimation problem, provides a description of the main 
methods for disaggregation of estimates and illustrates the procedures through an 
application to poverty mapping in Palestine combining data from a recent consumption 
survey and from the population census. 

The document is organized as follows. Section 1 gives some motivation and introduces the 
main philosophy behind small area estimation. Section 2 describes the basic small area 
estimation methods. Section 3 applies these methods to the estimation of poverty rates and 
gaps in specified localities from Palestine, using data from the 2016/2017 Palestinian 
Expenditure Consumption Survey (PECS) and the 2017 population census, provided by the 
Palestinian Central Bureau of Statistics (PCBS). Finally, Section 4 provides final remarks 
and recommendations. 
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1- The disaggregation problem 

1.1 Description of the problem 

Government-sponsored surveys conducted by statistical institutes are designed to produce 
statistics at a given aggregation level; that is, for either geographical or socio-economic 
subdivisions of the population. However, once a survey has been conducted, with sample 
size established to produce reliable estimates at a given aggregation level, there is often a 
subsequent demand for estimates at a more disaggregated level. Satisfying this demand of 
producing statistical estimates for smaller subdivisions than were originally planned, 
without incurring in additional costs due to an increase in the survey sample size, is the 
objective of small area estimation. 

Prior to the implementation of the survey, it would be possible to improve some aspects of 
the sampling design that avoid this problem to some extent. For example, it is possible to 
increase the sample sizes (with the corresponding increase in cost) in the areas where it is 
desired to estimate with higher precision, or to allocate the total sample size of the survey 
among the areas in a more efficient way. Despite the fact that there are several mechanisms 
to improve the sampling design and to have a sufficient minimum of data in all the 
subdivisions of the population, “the client will always require more than is specified at the 
design stage” (Fuller 1999), hence small area estimation methods are unavoidable. 

In the literature, the subdivisions for which statistical data (or estimates) are desired are 
commonly referred to as areas or domains, irrespectively of whether they actually 
correspond to geographical regions or socio-economic subgroups, or crossings of both 
types. When estimating a particular quantity of interest (e.g., a poverty indicator) in one of 
these areas, we call a direct estimator to an estimator that uses basically the survey data 
from that area. The usual direct estimators are unbiased or practically unbiased with 
respect to the distribution of the sampling design, e.g., across all possible samples that can 
be drawn from the population by means of the corresponding sampling design. However, if 
the survey was not planned to estimate at such level of disaggregation, the sample size in 
some of the areas may be too small, resulting in excessively large sampling errors for the 
direct estimators in those areas. The areas in which this occurs, regardless of their 
population size, are referred to in the literature as small areas (with respect to the indicator 
of interest). As a consequence, it is not the population size of the area what gives it the 
adjective “small”, but the poor quality of the direct estimates in these areas. 

There is no universal upper limit for the sampling error of a direct estimator to consider an 
area as “small”. Each statistical institute or international organization establishes its own 
limit for relative sampling error or Coefficient of Variation (CV) from which statistical data 
are considered unreliable and therefore not published. Some national statistical institutes 
agree to establish an estimator as “non-publishable” when its relative sampling error or CV 
exceeds 20%. Therefore, for these institutions, the areas for which direct estimates of an 
indicator of interest have a CV greater than 20% would be considered “small” for such 
indicator. 
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1.2 Methodologies to circumvent the disaggregation problem 

Indirect estimation methods 

The so-called indirect estimation methods do not only consider sample data relative to the 
area of interest, but also from other areas. These estimators use information from auxiliary 
variables that are related to the variable of interest. For example, consider that our variable 
of interest, let us say income, is related with education level. This relationship is considered 
similar for all areas and is represented through a model that links all the areas by means of 
common parameters. These common parameters are then estimated using the sample data 
from all the areas (the total sample is typically very large), providing more efficient 
estimators (compared to direct ones) due to the use of a greater amount of information. 
These estimators tend to slightly compromise the bias under the design in exchange for 
greatly increasing the overall efficiency of the estimator, evaluated in terms of mean 
squared error. 

The gain in efficiency of indirect estimators with respect to direct ones tends to increase as 
the area sample size decreases. However, these estimators tend to improve in most of the 
areas, including many with large sample sizes. In fact, some indirect estimators (see Section 
2.2) tend to a direct estimator as the sample size of the area increases. Therefore, indirect 
estimators possessing this property can be used for all areas, regardless of whether they 
are “small” or not, thereby reducing the importance of having a more accurate or formal 
definition of small area. 

The simplest indirect estimators are based on unrealistic hypotheses and therefore may 
have considerable bias. These include the so-called synthetic estimators, which do not 
account for the heterogeneity that usually exists between areas. Well-known synthetic 
estimators are the post-stratified synthetic estimator and the regression-synthetic estimator. 
Other classical indirect estimators are composite, which are computed as a weighted 
average between a direct estimator and a synthetic estimator. However, these estimators 
have several disadvantages. One is that the weight attached to each estimator does not 
depend on the goodness-of-fit of the model assumed by the synthetic estimator, which 
means that the indirect estimator is used regardless of its precision. Moreover, the weight 
attached to the direct estimator is usually very close to one, which means that little 
information is borrowed from the other areas. More sophisticated indirect estimators, 
which represent better the existing between-area heterogeneity, are those based on mixed 
regression models. There are two large groups of mixed regression models that are typically 
used for small area estimation: models at the area level and models at the unit level. We 
review them next. 

Area-level models 

Area-level models use only aggregated data for the estimation areas. Typically, this type of 
data can be accessed with fewer restrictions, as aggregation avoids confidentiality issues. 
Widely used area-level linear mixed models are the so-called Fay–Herriot (FH) models, 
proposed by Fay and Herriot (1979). These models have a two-level structure: 
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• In the first level, the indicator of interest for the areas is assumed to be linearly related 
with a set of auxiliary variables at the area level, where this relationship is constant for 
all the areas. For example, the decrease in the area mean income due to a large 
proportion of unemployed people in the area, keeping other variables constant, is the 
same in all areas. Thus, all areas are linked through a linear regression model. 

• In the second level, it is assumed that, given the true values of the area indicators of 
interest, the corresponding direct estimators are centered on these true values, with 
variances that are assumed to be known. Such variances represent the sampling errors 
of the direct estimators, which depend on the area sample size. Since area sample sizes 
are typically different, these variances vary across areas. 

These models have had a well-deserved success because the resulting estimators for the 
areas are a weighted average between direct estimators and synthetic-regression 
estimators, with weights depending on the area sample size. When the synthetic model 
does not fit the data well (i.e., the considered auxiliary variables do not sufficiently explain 
the between-area heterogeneity of the indicator) or the sample size of an area is large, the 
estimator based on the FH model places a greater weight to the direct estimator, which is 
sufficiently accurate. Conversely, when the synthetic model fits well or the area sample size 
is small, the estimator increases the weight given to the synthetic-regression estimator. In 
this case, the efficiency is increased because the synthetic estimator has a common 
regression coefficient for all the areas, which is then estimated using data from all the 
areas. In addition, since direct estimators are approximately unbiased with respect to the 
sampling design, for areas with larger sample sizes, the estimators obtained from the FH 
model also preserve a small bias under the design. One challenge in FH models is to 
determine the values of direct estimator variances (or heteroscedastic variances of model 
error terms). Although, as mentioned above, these variances are assumed to be known, in 
practice they are replaced by estimates. Given the small sample size in some of the areas, 
the estimates of these variances are also very imprecise. There are smoothing methods 
such as the generalized variance function method, see Fay and Herriot (1979), or 
nonparametric estimation of these variances, see González-Manteiga et al. (2010). The 
estimation of these variances adds the problem of incorporate the error of estimation of 
these variances into the error of the final estimator. 

Unit-level models 

In unit-level models, as the name implies, the model is set for each population unit 
(superpopulation model), and therefore the fitting of these models requires microdata of 
the response variable and auxiliary variables. The first model of this type was proposed by 
Battese, Harter, and Fuller (1988) and is known as the nested error model. This is a linear 
regression model that includes, in addition to the individual model errors, random effects 
associated with the areas. The area effects represent the heterogeneity between the areas 
that is not explained by the available auxiliary variables. These models are widely used 
today when the required data is available, since they incorporate much more information 
than area-level models, and the true model error variances are not needed. 
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Since unit-level models are based on the whole sample size 𝑛, they can attain much higher 
efficiency than area-level models, as long as there exist unit-level auxiliary variables that 
are sufficiently informative about the response variable. 

Best linear unbiased predictor 

The assumption of a stochastic model generating the values of the variable of interest for 
population units makes the indicators of interest random quantities. In this context, an 
unbiased predictor of an indicator is one whose expectation under the model coincides 
with the expectation of that indicator. 

When estimating linear-type indicators of the values of the variable of interest in the 
individuals of the population, such as means or totals, the basic models at area or individual 
level that are used are part of the linear mixed models that include random effects for the 
areas of interest. Within these models, the usual indirect estimator is the Best Linear 
Unbiased Predictor (BLUP), which is the linear combination of the observed values of the 
response variable for the sample units, which is unbiased under the model and minimizes 
the model mean squared error. The BLUP depends on the unknown model parameters, 
which represent the common behavior among the areas. Replacing these unknown 
parameters with estimators gives the Empirical BLUP (EBLUP). This is finally the usual 
estimator (or predictor) based on a model of a linear indicator in a small area. 

The BLUP does not require any hypothesis of normality in the model. On the other hand, to 
estimate more general indicators than linear ones, the best predictor is the one that 
minimizes the mean squared error, without requiring it to be linear or unbiased. This 
equals the expectation under the model of the indicator to estimate, given the observed 
values in the sample. Under normality, the best predictor of a linear indicator that uses the 
weighted least squares estimator of the regression parameter matches the BLUP. In the 
absence of normality or when the indicator to be estimated is not linear, it is possible that 
the expectation that defines the best predictor cannot be computed analytically. In that 
case, numerical approximations are employed to approximate the best predictor. 

Further reading 

This report is not meant to provide a thorough review of small area estimation methods, 
but just an overview of the most commonly employed techniques that are in relation with 
the undertaken project. For more detail on the techniques described here and for 
information about other techniques, we refer the interested reader to the monograph by 
Rao and Molina (2015), where most of the work carried out in the field up to the 
publication date is described. 

  



9 
 

2- Estimation methods 

2.1 Direct estimators 

In this section we describe the basic direct estimators for the mean of a variable 𝑌 within 
area 𝑑, given by 

𝑌𝑑 = 𝑁𝑑
−1∑𝑌𝑑𝑖

𝑁𝑑

𝑖=1

,  (1) 

where 𝑌𝑑𝑖  denotes the value of 𝑌 for individual 𝑖 within area 𝑑. 

Before reviewing the basic direct estimators, let us introduce the notation that will be 
employed along the document. The population 𝑈 of size 𝑁 is assumed to be partitioned in 𝐷 
subpopulations 𝑈𝑑 of size 𝑁𝑑 , 𝑑 = 1,… , 𝐷, with 𝑁 = ∑ 𝑁𝑑

𝐷
𝑑=1 . We denote by 𝑠 the sample 

drawn from the population 𝑈 of size 𝑛, by 𝑠𝑑 the subsample from area 𝑑 of size 𝑛𝑑  (that 
may be zero) and by 𝑟𝑑 the set of elements that do not belong to the sample of the same 
area, 𝑑 = 1,… , 𝐷, where 𝑛 = ∑ 𝑛𝑑

𝐷
𝑑=1 . Besides, we denote by 𝜋𝑑𝑖  the inclusion probability of 

unit 𝑖 in the sample from area 𝑑, by 𝑤𝑑𝑖 = 𝜋𝑑𝑖
−1 to the corresponding sampling weight and 

by 𝜋𝑑,𝑖𝑗 to the joint inclusion probability of units 𝑖 and 𝑗 in the sample from area 𝑑. 

Horvitz–Thompson estimator 

If 𝜋𝑑𝑖 > 0 for all 𝑖 = 1,… ,𝑁𝑑, the unbiased estimator, with respect to the sampling design, 

of the area mean 𝑌𝑑  is the well-known Horvitz–Thompson (HT) estimator. This estimator 
requires knowing the true area count 𝑁𝑑  and the sampling weights 𝑤𝑑𝑖 = 𝜋𝑑𝑖

−1 for the 

sampled units in area 𝑑. Assuming that these are known, the HT estimator of 𝑌𝑑  is 

�̂�𝑑 = 𝑁𝑑
−1 ∑𝑤𝑑𝑖

𝑖∈𝑠𝑑

𝑌𝑑𝑖.  (2) 

For the area total 𝑌𝑑 = ∑ 𝑌𝑑𝑖
𝑁𝑑
𝑖=1 , the HT estimator is simply �̂�𝑑 = ∑ 𝑤𝑑𝑖𝑖∈𝑠𝑑 𝑌𝑑𝑖, which does 

not require knowing the area count 𝑁𝑑 . 

If 𝜋𝑑,𝑖𝑗 > 0 for all 𝑖, 𝑗 ∈ {1, … ,𝑁𝑑}, an unbiased estimator under the sampling design of the 

variance of 𝑌𝑑 is 

var̂𝜋(�̂�𝑑) = 𝑁𝑑
−2 {∑

𝑌𝑑𝑖
2

𝜋𝑑𝑖
2

𝑖∈𝑠𝑑

(1 − 𝜋𝑑𝑖) + 2∑ ∑
𝑌𝑑𝑖𝑌𝑑𝑗

𝜋𝑑𝑖𝜋𝑑𝑗
𝑗∈𝑠𝑑
𝑗>𝑖

𝑖∈𝑠𝑑

(
𝜋𝑑,𝑖𝑗 − 𝜋𝑑𝑖𝜋𝑑𝑗

𝜋𝑑,𝑖𝑗
)} .  (3) 

During the estimation phase, in many cases not all the information on the sampling design 
is available apart from the sampling weights 𝑤𝑑𝑖. If the second order inclusion probabilities 
𝜋𝑑,𝑖𝑗 are not available, then the estimator (3) can not be computed. However, for sampling 

designs with second-order inclusion probabilities verifying 𝜋𝑑,𝑖𝑗 ≈ 𝜋𝑑𝑖𝜋𝑑𝑗 , for 𝑗 ≠ 𝑖 (as in 
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Poisson sampling, where equality is satisfied), the second term of (3) is approximately zero. 
In addition, replacing 𝑤𝑑𝑖 = 𝜋𝑑𝑖

−1, we get the following variance estimator, which does not 
depend on the second-order inclusion probabilities: 

var̂𝜋(�̂�𝑑) = 𝑁𝑑
−2 ∑𝑤𝑑𝑖

𝑖∈𝑠𝑑

(𝑤𝑑𝑖 − 1)𝑌𝑑𝑖
2 . 

The HT estimator (2) weights the individual observations 𝑌𝑑𝑖  using the sampling weights or 
inverses of the inclusion probabilities, 𝑤𝑑𝑖 = 𝜋𝑑𝑖

−1. This protects against situations where 
the probability of selecting an individual is related to the value of the variable of interest 
(informative sampling design). For example, imagine that individuals with lower income 
have larger probability of appearing in the sample. Then, this type of individuals are likely 
to appear more often in the final sample, while those with higher incomes are likely to be 
scarce in the sample. This means that, if we were to estimate by giving the same weight to 
all the sample observations, as in the usual sample mean, we would understate the mean 
income. For this reason, it is necessary to reduce the weight of observations that are most 
likely to appear in the sample,  and increase the weight to those that are least likely to 
appear. 

Hájek estimator 

Although the HT estimator is exactly unbiased with respect to the sampling design, its 
variance under the design can be very large when the sample size of the area 𝑑, 𝑛𝑑 , is small. 
A slightly biased estimator for small 𝑛𝑑  but with a somewhat smaller variance, and which 

does not require knowledge of the area size 𝑁𝑑  to estimate the mean 𝑌𝑑 , is the Hájek 
estimator (HA). This estimator is a weighted average of the sample observations from the 
area, using as weights the sampling weights, that is, 

�̂�𝑑
HA

= �̂�𝑑
−1 ∑𝑤𝑑𝑖

𝑖∈𝑠𝑑

𝑌𝑑𝑖 ,  where �̂�𝑑 = ∑𝑤𝑑𝑖

𝑖∈𝑠𝑑

.  (4) 

For the total 𝑌𝑑 = ∑ 𝑌𝑑𝑖
𝑁𝑑
𝑖=1 , the Hájek estimator is �̂�𝑑

HA = 𝑁𝑑�̂�𝑑
HA

, which does require 

knowing the area count 𝑁𝑑 . 

Under the sampling design, a variance estimator of the Hájek estimator, �̂�𝑑
HA

, is obtained 
using Taylor’s linearization method. The resulting estimator is obtained by simply 

replacing 𝑌𝑑𝑖  with �̃�𝑑𝑖 = 𝑌𝑑𝑖 − �̂�𝑑
HA

 in the estimator of the variance of the HT estimator of 
the total �̂�𝑑  and dividing by �̂�𝑑; that is, 
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var̂𝜋(�̂�𝑑
HA

) =  �̂�𝑑
−2 {∑

(𝑌𝑑𝑖 − �̂�𝑑
HA

)2

𝜋𝑑𝑖
2

𝑖∈𝑠𝑑

(1 − 𝜋𝑑𝑖)

+ 2∑ ∑
(𝑌𝑑𝑖 − �̂�𝑑

HA

)(𝑌𝑑𝑗 − �̂�𝑑
HA

)

𝜋𝑑𝑖𝜋𝑑𝑗
𝑗∈𝑠𝑑
𝑗>𝑖

𝑖∈𝑠𝑑

(
𝜋𝑑,𝑖𝑗 − 𝜋𝑑𝑖𝜋𝑑𝑗

𝜋𝑑,𝑖𝑗
)} ,

 

assuming that 𝜋𝑑,𝑖𝑗 > 0, for all 𝑖 and 𝑗. For designs in which 𝜋𝑑,𝑖𝑗 ≈ 𝜋𝑑𝑖𝜋𝑑𝑗 , for 𝑗 ≠ 𝑖, such as 

in Poisson sampling, this estimated variance reduces to 

var̂𝜋(�̂�𝑑
HA

) = �̂�𝑑
−2 ∑𝑤𝑑𝑖

𝑖∈𝑠𝑑

(𝑤𝑑𝑖 − 1)(𝑌𝑑𝑖 − �̂�𝑑
HA

)2. 

Note that, when adding the HT direct estimators of the totals 𝑌𝑑  for the areas of a larger 
region, say for the entire population, the HT estimator of the population total �̂� =
∑ ∑ 𝑤𝑑𝑖𝑖∈𝑠𝑑
𝐷
𝑑=1 𝑌𝑑𝑖  is obtained, that is, 

∑�̂�𝑑

𝐷

𝑑=1

= �̂�. 

Since at higher aggregation levels (e.g. the population level), the HT estimator is efficient, 
this benchmarking property is desirable for the area estimators. In fact, this consistency 
property is often required for publication of official statistical figures. However, other 
estimators, especially indirect ones, do not add up exactly to the considered estimator for 
the total population (which could be different from �̂�). For adjustments on small area 
estimators to enforce this property, see Ghosh and Steorts (2013) and references therein. 

2.2 Indirect estimators 

As previously outlined, small area estimators based on models fall into the category of 
indirect estimators, as they borrow information from other areas. They do so by 
representing in the model the unexplained between-area heterogeneity through the 
random additive effects for the areas. As seen later, these random area effects provide a 
very good property to the estimators based on linear models: they can be written as 
compound estimators that tend to a direct estimator in areas with sufficient sample size. 
These models are significantly more realistic than the basic synthetic ones that do not 
include the area effects, and this translates into less biased estimators under sample 
design. 

Fay–Herriot model 

The Fay–Herriot (FH) model is a very popular area-level model that was introduced by Fay 
and Herriot (1979) to estimate per capita income in small places of the U.S. This model is 
currently used by the U.S. Census Bureau, within the Small Area Income and Poverty 
Estimates (SAIPE) program, to estimate proportions of poor school-age children in 
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counties and school districts; see Bell (1997) or http://www.census.gov/hhes/www/saipe 
for more details. 

The model links the indicators of interest for all areas 𝛿𝑑 , 𝑑 = 1,… , 𝐷, by assuming that 
they are linearly related with the values of 𝑝 area-level auxiliary variables 𝐱𝑑, and this 
relationship is constant for all areas; more precisely, 

𝛿𝑑 = 𝐱𝑑′𝛃 + 𝑢𝑑 , 𝑑 = 1,… , 𝐷,  (5) 

where 𝛃 is the vector of regression coefficients, which is common for all the areas, and 𝑢𝑑  is 
the regression error, also known as the random effect of area 𝑑. Random effects represent 
the heterogeneity of the indicators 𝛿𝑑  across the areas that is not explained by the auxiliary 
variables. In the simplest model, 𝑢𝑑  are assumed to be independent and identically 

distributed (iid), with common (unknown) variance 𝜎𝑢
2, that is, 𝑢𝑑 ∼

iid
(0, 𝜎𝑢

2). 

The true values of 𝛿𝑑  are not observable, and then model (5) cannot be readily fit. One 
possible approach is to plug-in a direct estimator �̂�𝑑

DIR of 𝛿𝑑 , but we must keep in mind that 

this estimator has sampling error. The FH model considers that 𝛿𝑑
DIR is unbiased under the 

design. In this case, we can represent the error due to sampling of this estimator through 
the model: 

𝛿𝑑
DIR = 𝛿𝑑 + 𝑒𝑑, 𝑑 = 1, … , 𝐷,  (6) 

where 𝑒𝑑 is the sampling error in area 𝑑. Errors 𝑒𝑑 are assumed to be independent of each 
other and are also independent of the area effects 𝑢𝑑 , have zero mean and known variances 

𝜓𝑑; that is, 𝑒𝑑 ∼
i
(0, 𝜓𝑑). In practice, these variances, 𝜓𝑑 = var𝜋(𝛿𝑑

DIR|𝛿𝑑), 𝑑 = 1,… , 𝐷, are 
estimated using the survey microdata. Combining models (5) and (6), the following linear 
mixed model is obtained: 

𝛿𝑑
DIR = 𝐱𝑑′𝛃 + 𝑢𝑑 + 𝑒𝑑, 𝑑 = 1, … , 𝐷.  (7) 

The BLUP of 𝛿𝑑 = 𝐱𝑑′𝛃 + 𝑢𝑑  can be obtained simply by fitting the linear mixed model (7), 
that is, the BLUP under the FH model of 𝛿𝑑  is 

𝛿𝑑
FH = 𝐱𝑑′�̃� + �̃�𝑑 ,  (8) 

where �̃�𝑑 = 𝛾𝑑(�̂�𝑑
DIR − 𝐱𝑑′�̃�) is the BLUP of 𝑢𝑑 , being 𝛾𝑑 = 𝜎𝑢

2/(𝜎𝑢
2 + 𝜓𝑑) and �̃� is the 

weighted least squares estimator of 𝛃 under model (7), given by 

�̃� = (∑𝛾𝑑

𝐷

𝑑=1

𝐱𝑑𝐱𝑑′)

−1

∑𝛾𝑑

𝐷

𝑑=1

𝐱𝑑𝛿𝑑
DIR. 

Substituting �̃�𝑑 = 𝛾𝑑(𝛿𝑑
DIR − 𝐱𝑑′�̃�) in (8) we can express the BLUP as a convex linear 

combination of the direct estimator and the synthetic regression estimator, 

𝛿𝑑
FH = 𝛾𝑑𝛿𝑑

DIR + (1 − 𝛾𝑑)𝐱𝑑′�̃�,  (9) 

http://www.census.gov/hhes/www/saipe
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where 𝛾𝑑 = 𝜎𝑢
2/(𝜎𝑢

2 + 𝜓𝑑) ∈ (0,1) is the weight of the direct estimator. For an area 𝑑 where 

the direct estimator 𝛿𝑑
DIR is efficient, the sample variance 𝜓𝑑  will be small compared to the 

unexplained heterogeneity 𝜎𝑢
2, hence 𝛾𝑑 is close to one and therefore 𝛿𝑑

FH gives more 
weight to the direct estimator. On the other hand, in areas 𝑑 where the direct estimator 
lacks quality due to the small sample size, 𝜓𝑑  is larger than 𝜎𝑢

2, then 𝛾𝑑 approaches zero 

and therefore more weight is given to the synthetic regression estimator 𝐱𝑑′�̃�, which uses 
data from all areas to estimate the common parameter 𝛃. That is, 𝛿𝑑

FH borrows information 

from the other areas through the synthetic regression estimator 𝐱𝑑′�̃� as needed, depending 
on the efficiency of the direct estimator. The fact that the BLUP 𝛿𝑑

FH approaches the direct 
estimator when the area sample size is large (𝜓𝑑  small) is a very desirable property, as it is 
not needed to know when an area is “small enough” to use this estimator instead of the 
direct estimator. 

The BLUP of 𝛿𝑑  depends on the true value of 𝜎𝑢
2 of the area effects 𝑢𝑑 . In practice, this 

variance is unknown, and we must estimate it. Common approaches are Maximum 
Likelihood (ML) and Restricted Maximum Likelihood (REML), the latter correcting the 
estimator of 𝜎𝑢

2 to provide a less biased estimator for finite sample sizes. Fay and Herriot 
(1979) also proposed a method of moments that avoids establishing the shape of the 
likelihood. Let �̂�𝑢

2 be a consistent estimator of 𝜎𝑢
2, like those obtained by the above fitting 

methods. Replacing 𝜎𝑢
2 with �̂�𝑢

2 in (8), we get the EBLUP of 𝛿𝑑: 

𝛿𝑑
FH = 𝛾𝑑𝛿𝑑

DIR + (1 − 𝛾𝑑)𝐱𝑑′�̂�,  (10) 

where 𝛾𝑑 = �̂�𝑢
2/(�̂�𝑢

2 + 𝜓𝑑) and �̂� = (∑ 𝛾𝑑
𝐷
𝑑=1 𝐱𝑑𝐱𝑑′)

−1∑ 𝛾𝑑
𝐷
𝑑=1 𝐱𝑑𝛿𝑑

DIR. 

If the model parameters 𝛃 and 𝜎𝑢
2 are known, the MSE of the BLUP based on the model (7) 

is given by 

mse(𝛿𝑑
FH) = 𝛾𝑑𝜓𝑑 ≤ 𝜓𝑑 = var𝜋(𝛿𝑑

DIR|𝛿𝑑). 

Therefore, given the true value of the indicator 𝛿𝑑 , if 𝜎𝑢
2 and 𝛃 are known, the BLUP under 

the FH model, 𝛿𝑑
FH, cannot be less efficient than the direct estimator. In practice, since 𝜎𝑢

2 
and 𝛃 are estimated, the error due to the estimation of these two parameters is added to 
the MSE of the FH estimator. However, these two extra terms that are added to the MSE 
tend to zero as the number of areas 𝐷 tends to infinity. Therefore, for a sufficient number of 
𝐷 areas, it is likely that the FH estimator will still improve on the direct estimator in terms 
of MSE. For this reason, these estimators tend to improve in most areas as long as there is a 
sufficient number of areas 𝐷. 

Under normality of 𝑢𝑑  and 𝑒𝑑, Prasad and Rao (1990) obtained a second order 
approximation (i.e., with error 𝑜(𝐷−1) when 𝐷 is large) of the MSE for the FH estimator: 

mse(�̂�𝑑
𝐹𝐻) = 𝑔𝑑1(𝜎𝑢

2) + 𝑔𝑑2(𝜎𝑢
2) + 𝑔𝑑3(𝜎𝑢

2), 

where 



14 
 

𝑔1𝑑(𝜎𝑢
2) = 𝛾𝑑𝜓𝑑 ,

𝑔2𝑑(𝜎𝑢
2) = (1 − 𝛾𝑑)

2𝐱𝑑′ (∑ 𝛾𝑑

𝐷

𝑑=1

𝐱𝑑𝐱𝑑′)

−1

𝐱𝑑,

𝑔3𝑑(𝜎𝑢
2) = (1 − 𝛾𝑑)

2(𝜎𝑢
2 + 𝜓𝑑

2)−1var(�̂�𝑢
2),

 

where var(�̂�𝑢
2) is the asymptotic variance of the estimator �̂�𝑢

2 of 𝜎𝑢
2, which depends on the 

employed estimation method. 

ELL method 

Elbers, Lanjouw, and Lanjouw (2003) developed a method for estimation of general 
indicators (henceforth referred as ELL) that is traditionally used by the World Bank to 
construct maps showing the regional distribution of poverty or inequality. This method 
was the first one designed to estimate indicators that are more complex than the average 
or the total, as long as they are a function of a welfare variable (usually disposable income 
or expenditure). This method assumes the nested error model 

𝑌𝑑𝑖 = 𝐱𝑑𝑖′𝛃 + 𝑢𝑑 + 𝑒𝑑𝑖, 𝑖 = 1,… ,𝑁𝑑 ,  𝑑 = 1,… , 𝐷,  (11) 

where 𝑌𝑑𝑖 = log(𝐸𝑑𝑖 + 𝑐) for 𝑐 > 0 constant, 𝐸𝑑𝑖  is the welfare variable for unit 𝑖 in the area 

𝑑, 𝑢𝑑 ∼
iid

(0, 𝜎𝑢
2), and 𝑒𝑑𝑖 ∼

i
(0, 𝜎𝑒

2𝑘𝑑𝑖
2 ), being 𝑢𝑑  and 𝑒𝑑𝑖 independent, and 𝑘𝑑𝑖  known 

constants representing possible heteroscedasticity. 

The ELL estimator of a general parameter 𝛿𝑑 = 𝛿𝑑(𝐲𝑑) under the model (11) is obtained by 
a bootstrap procedure. This bootstrap procedure provides a numerical approximation of 
the theoretical ELL estimator, which is given by the marginal expectation 𝛿𝑑

ELL = 𝔼[𝛿𝑑]. The 
same bootstrap procedure is used to get an estimate of the MSE of the ELL estimator. 

The bootstrap procedure works as follows: 

1. From the residuals of the fitted model (11) to the data, random effects 𝑢𝑑
∗  are 

generated for each area 𝑑 = 1,… , 𝐷, and errors 𝑒𝑑𝑖
∗ , for each unit 𝑖 = 1,… ,𝑁𝑑, 

𝑑 = 1,… , 𝐷. 

2. From the estimator �̂� of the regression parameter 𝛃, and using the values of the 
auxiliary variables for the individuals inside and outside the sample, bootstrap values 
of the response variable are generated for all the population units. This is done by the 
generation process 

𝑌𝑑𝑖
∗ = 𝐱𝑑𝑖′�̂� + 𝑢𝑑

∗ + 𝑒𝑑𝑖
∗ , 𝑖 = 1,… ,𝑁𝑑 ,  𝑑 = 1,… , 𝐷. 

3. The above step provides a census of the response variable, which can be used to 
estimate indicators of any kind as long as they depend only on the welfare of 
individuals. This generation process is repeated for 𝑎 = 1,… , 𝐴, getting 𝐴 full censuses. 

Then, for each census 𝑎, we calculate the indicator of interest 𝛿𝑑
∗(𝑎)

= 𝛿𝑑(𝐲𝑑
∗(𝑎)

), where 

𝐲𝑑
∗(𝑎)

= (𝑌𝑑1
∗(𝑎)

, … , 𝑌𝑑𝑁𝑑

∗(𝑎)
)′ are the values of the response variable in the area 𝑑 in the 

bootstrap census 𝑎. 
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4. The ELL estimator is obtained by averaging over the 𝐴 censuses: 

𝛿𝑑
ELL =

1

𝐴
∑𝛿𝑑

∗(𝑎)

𝐴

𝑎=1

. 

In addition, in this method, the MSE is estimated as follows 

mseELL(𝛿𝑑
ELL) =

1

𝐴
∑(

𝐴

𝑎=1

𝛿𝑑
∗(𝑎)

− 𝛿𝑑
ELL)2. 

It is easy to see that, for areas of large population size 𝑁𝑑  (usually the case in real 

applications), if we compute the ELL estimator of the area mean 𝑌𝑑, by averaging 

𝑌𝑑
∗(𝑎)

≈ 𝐗𝑑′�̂� + 𝑢𝑑
∗(𝑎)

 across the 𝐴 censuses, the average of the random bootstrap effects 

𝑢𝑑
∗(𝑎)

, along the bootstrap replicates, is 𝐴−1∑ 𝑢𝑑
∗(𝑎)𝐴

𝑎=1 ≈ 𝔼[𝑢𝑑] = 0. Therefore, the ELL 

estimator of the area mean, �̂�𝑑
ELL

= 𝔼[𝑌𝑑], turns out to be the synthetic-regression 
estimator 

�̂�𝑑
ELL

= 𝐗𝑑′�̂�.
 

The reason for this is that the marginal expectation 𝔼[𝛿𝑑], unlike the conditional 
expectation on the sample data, does not use the sample observations and therefore 
adheres to the prediction obtained through the linear regression without taking into 
account the area effects (they vanish). Therefore, the ELL estimator has the same problems 
as the regression-synthetic estimator. Specifically, it can be considerably biased if the 
regression model without area effects does not hold, that is, if the considered auxiliary 
variables do not fully explain the between-area heterogeneity of the response variable. 

Furthermore, in the above bootstrap procedure, unlike in usual bootstrap methods, the 
model is not fitted again, and indicators are not re-estimated with each bootstrap sample 
(which should be drawn from the bootstrap censuses to replicate the real world). 
Therefore, the real world process is not being replicated in the ELL bootstrap procedure. As 
a result, the MSE estimated using this method does not correctly reproduce the error 
incurred in the real world. Finally, in the original ELL method, the random effects included 
in the model are actually for clusters (first stage sampling units) and not for the areas of 
interest. If this model is considered but the available auxiliary variables do not fully explain 
the between-area heterogeneity, the ELL estimate of the MSE can be seriously understating 
the true MSE of the ELL estimator. 

EB method 

Molina and Rao (2010) proposed to estimate general nonlinear indicators using the 
Best/Bayes predictor (BP) based on the nested error model. This method assumes that the 
variables 𝑌𝑑𝑖 = log(𝐸𝑑𝑖 + 𝑐) follow the model (11) with normally distributed random 
effects 𝑢𝑑  and errors 𝑒𝑑𝑖. Under this model, the variable vectors for each area, 𝐲𝑑 =

(𝑌𝑑1, … , 𝑌𝑑𝑁𝑑
)′, 𝑑 = 1, … , 𝐷, are independent and verify 𝐲𝑑 ∼

i
𝑁(𝛍𝑑 , 𝐕𝑑), with mean vector 
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𝛍𝑑 = 𝐗𝑑𝛃, where 𝐗𝑑 = (𝐱𝑑1, … , 𝐱𝑑𝑁𝑑
)′, and covariance matrix 𝐕𝑑 = 𝜎𝑢

2𝟏𝑁𝑑
𝟏𝑑′ + 𝜎𝑒

2𝐀𝑑, 

where 𝐀𝑑 = diag(𝑘𝑑𝑖
2 ; 𝑖 = 1,… ,𝑁𝑑). 

For a general indicator defined as a function of 𝐲𝑑, that is, 𝛿𝑑 = 𝛿𝑑(𝐲𝑑), the best predictor is 
the one that minimizes the MSE and is given by 

𝛿𝑑
B(𝛉) = 𝔼𝐲𝑑𝑟[𝛿𝑑(𝐲𝑑)|𝐲𝑑𝑠; 𝛉],  (12) 

where the expectation is taken with respect to the distribution of the out-of-sample values 
𝐲𝑑𝑟 from area 𝑑, given the sample values 𝐲𝑑𝑠. This conditioned distribution depends on the 
true value 𝛉 of the parameters of the model for 𝐲𝑑𝑠. Replacing 𝛉 with a consistent estimator 
�̂� in the best predictor (12), we get the so-called Empirical Best/Bayes (EB) predictor, 
𝛿𝑑
EB = 𝛿𝑑

𝐵(�̂�). The usual ML and REML fitting methods based on the normal likelihood 
provide consistent estimators even if normality does not hold, under certain regularity 
conditions. 

Under the nested error model (11), the distribution of 𝐲𝑑𝑟|𝐲𝑑𝑠, required for calculation of 
the best predictor (12), is obtained as follows. First, we decompose the matrices 𝐗𝑑 and 𝐕𝑑  
in the sample and the out-of-sample parts in a similar way as we have decomposed 𝐲𝑑, that 
is, 

𝐲𝑑 = (
𝐲𝑑𝑠
𝐲𝑑𝑟

) , 𝐗𝑑 = (
𝐗𝑑𝑠

𝐗𝑑𝑟
) , 𝐕𝑑 = (

𝐕𝑑𝑠 𝐕𝑑𝑠𝑟
𝐕𝑑𝑟𝑠 𝐕𝑑𝑟

) . 

Since 𝐲𝑑 follows a normal distribution, then all the conditionals also follow a normal 
distribution; specifically, 

𝐲𝑑𝑟|𝐲𝑑𝑠 ∼
i
𝑁(𝛍𝑑𝑟|𝑠, 𝐕𝑑𝑟|𝑠), 𝑑 = 1,… , 𝐷,  (13) 

where the conditional mean vector and the corresponding covariance matrix take the form 

𝛍𝑑𝑟|𝑠 = 𝐗𝑑𝑟𝛃 + 𝛾𝑑(𝑦𝑑𝑎 − 𝐱𝑑𝑎
𝑇
𝛃)𝟏𝑁𝑑−𝑛𝑑 ,  (14)

𝐕𝑑𝑟|𝑠 = 𝜎𝑢
2(1 − 𝛾𝑑)𝟏𝑁𝑑−𝑛𝑑𝟏𝑁𝑑−𝑛𝑑

𝑇 + 𝜎𝑒
2diag𝑖∈𝑟𝑑(𝑘𝑑𝑖

2 ),  (15)
 

where 𝟏𝑘 is a vector of ones of size 𝑘. 

For indicators 𝛿𝑑 = 𝛿𝑑(𝐲𝑑) with complex shape, it might not be possible to calculate 
analytically the expectation defining the best predictor. In these cases, the best predictor 
can be approximated empirically using Monte Carlo simulation. The process is as follows: 

1. Get an estimator �̂� = (�̂�′, �̂�𝑢
2, 𝜎𝑒

2)′ of the parameter vector 𝛉 = (𝛃′, 𝜎𝑢
2, 𝜎𝑒

2)′ by fitting 
the model (11) to the sample data (𝐲𝑠, 𝐗𝑠). 

2. Generate, for 𝑎 = 1,… , 𝐴, response variable vectors for units outside the sample of 

area 𝑑, 𝐲𝑑𝑟
(𝑎)

, from the distribution of 𝐲𝑑𝑟|𝐲𝑑𝑠 given in (13)–(15), with 𝛉 replaced by its 

estimator �̂� obtained in Step 1. 
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3. Augment the generated vector 𝐲𝑑𝑟
(𝑎)

 with the sample data 𝐲𝑑𝑠 to form a census vector 

for the area 𝑑, 𝐲𝑑
(𝑎)

= (𝐲𝑑𝑠
′ , (𝐲𝑑𝑟

(𝑎)
)′)′. Using 𝐲𝑑

(𝑎)
, compute the indicator of interest 

𝛿𝑑
(𝑎)

= 𝛿𝑑(𝐲𝑑
(𝑎)
) and repeat for 𝑎 = 1,… , 𝐴. 

4. The Monte Carlo approximation of the EB predictor of the indicator 𝛿𝑑  is obtained by 
averaging the indicators for the 𝐴 simulated censuses, that is, 

𝛿𝑑
EB =

1

𝐴
∑𝛿𝑑

(𝑎)

𝐴

𝑎=1

.  (16) 

Note that, for non-linear area indicators 𝛿𝑑 , both ELL and EB estimators require, apart from 
the survey observations from the target and auxiliary variables, a census with the unit-level 
values of the auxiliary variables {𝐱𝑑𝑖; 𝑖 = 1,… ,𝑁𝑑 ,  𝑑 = 1, … , 𝐷}. In principle, the EB method 
additionally requires identifying the survey units in the census of the auxiliary variables (to 
identify sample and out-of-sample units). Linking the survey and census is not always 
possible in practice. However, in practice, the area sample size 𝑛𝑑  is typically very small 
compared to the population size 𝑁𝑑 . In this case, we can use the so-called Census EB 
predictor proposed by Correa, Molina, and Rao (2012), which avoids identifying the sample 
units in the census. A Monte Carlo approximation to the Census EB predictor can be 

obtained with the same procedure as above but replacing the out-of-sample vector 𝐲𝑑𝑟
(𝑎)

 by 

the full census vector 𝐲𝑑
(𝑎)

. More precisely, by generating in Step 2 full area censuses as 

𝐲𝑑
(𝑎)

= 𝛍𝑑|𝑠 + 𝑣𝑑
(𝑎)
𝟏𝑁𝑑−𝑛𝑑 + 𝛆𝑑

(𝑎)
, where 𝛍𝑑|𝑠 = 𝐗𝑑𝛃 + 𝛾𝑑(𝑦𝑑𝑎 − 𝐱𝑑𝑎

𝑇
𝛃)𝟏𝑁𝑑

 and 𝛆𝑑
(𝑎)

∼

𝑁(𝟎𝑁𝑑
, 𝜎𝑒

2diag𝑖=1,…,𝑁𝑑
(𝑘𝑑𝑖

2 )). If the area sampling fraction 𝑛𝑑/𝑁𝑑  is negligible, the Census EB 

predictor will be approximately equal to the original EB. 

In the case of complex indicators, calculating analytical approximations for the MSE of the 
corresponding EB predictors is complicated. Molina and Rao (2010) describe a parametric 
bootstrap method for estimating the MSE based on the bootstrap method for finite 
populations of González-Manteiga et al. (2008). This method consists on performing the 
following steps: 

1. Fit the model to the sample data 𝐲𝑠 = (𝐲1𝑠, … , 𝐲𝐷𝑠)′, getting estimates of the model 
parameters 𝛉 = (𝛃′, 𝜎𝑢

2, 𝜎𝑒
2)′. 

2. Generate the bootstrap area effects as 

𝑢𝑑
∗(𝑏)

∼
iid

𝑁(0, �̂�𝑢
2), 𝑑 = 1, … , 𝐷. 

3. Generate, independently of 𝑢1
∗(𝑏)

, … , 𝑢𝐷
∗(𝑏)

, the bootstrap errors as 

𝑒𝑑𝑖
∗(𝑏)

∼
iid

𝑁(0, �̂�𝑒
2), 𝑖 = 1,… ,𝑁𝑑 ,  𝑑 = 1,… , 𝐷. 

4. Generate a bootstrap population (or census) of the response variable values through 
the model 
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𝑌𝑑𝑖
∗(𝑏)

= 𝐱𝑑𝑖′�̂� + 𝑢𝑑
∗(𝑏)

+ 𝑒𝑑𝑖
∗(𝑏)

, 𝑖 = 1,… ,𝑁𝑑 ,  𝑑 = 1,… , 𝐷. 

5. Define the census vector of the response variable for area 𝑑 as 𝐲𝑑
∗(𝑏)

=

(𝑌𝑑1
∗(𝑏)

, … , 𝑌𝑑𝑁𝑑

∗(𝑏)
)′. Compute the indicators of interest from the bootstrap census 

𝛿𝑑
∗(𝑏)

= 𝛿𝑑(𝐲𝑑
∗(𝑏)

), 𝑑 = 1,… , 𝐷. 

6. For the original sample 𝑠 = 𝑠1 ∪ 𝑠𝐷 , let 𝐲𝑠
∗(𝑏)

= ((𝐲1𝑠
∗(𝑏)

)′, … , (𝐲𝐷𝑠
∗(𝑏)

)′)′ be the vector with 

the bootstrap observations for the units with indexes in the sample, that is, containing 

the variables 𝑌𝑑𝑖
∗(𝑏)

, 𝑖 ∈ 𝑠𝑑, 𝑑 = 1, … , 𝐷. Fit the model (11) again to the bootstrap 

sample data 𝐲𝑠
∗(𝑏)

 and get the EB bootstrap predictors for the area indicators of 

interest, 𝛿𝑑
EB∗(𝑏)

, 𝑑 = 1,… , 𝐷. 

7. Repeat Steps 2–6 for 𝑏 = 1,… , 𝐵 and obtain the real bootstrap values, 𝛿𝑑
∗(𝑏)

, and the 

corresponding bootstrap EB predictors, 𝛿𝑑
EB∗(𝑏)

, for each area 𝑑 = 1,… , 𝐷 and for each 

bootstrap replicate 𝑏 = 1, … , 𝐵. 

8. The “naïve bootstrap” estimators of the MSE of the EB predictors 𝛿𝑑
EB are given by 

mse𝐵(𝛿𝑑
EB) =

1

𝐵
∑(𝛿𝑑

EB∗(𝑏)
− 𝛿𝑑

∗(𝑏)
)
2

𝐵

𝑏=1

, 𝑑 = 1,… , 𝐷. 

When sample units cannot be identified in the census, this bootstrap procedure can be 
adapted to get estimators of the MSE for the Census EB predictors. In this case, instead of 

generating the bootstrap censuses 𝐲𝑑
∗(𝑏)

 in Step 5 and then extracting the sample elements 

𝐲𝑑𝑠
∗(𝑏)

) in Step 6 (which cannot be identified in the census), we can generate the sample 

units 𝐲𝑑𝑠
∗(𝑏)

) separately from the census, from their corresponding model using the survey 

design matrix 𝐗𝑑𝑠. The bootstrap sample data is then used to compute the Census EB 
predictors instead of the original EB ones. 
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3- Application: Poverty mapping in Palestine 

In this section we apply small area estimation methods for poverty mapping in Palestine. 
Our data sources are the Palestinian Expenditure Consumption Survey (PECS) 
corresponding to 2016/17 and the Population Census of 2017. Our domains of interest are 
localities, which are nested within Palestinian governorates. From the 319 localities 
appearing in the census, only 𝐷 = 162 are sampled in the PECS. As welfare measure 𝐸𝑑𝑖 , we 
consider monthly expenditure per adult equivalent (in ILS), which is observed in the PECS 
but not in the census. The census contains several variables that are measured in a similar 
way in the PECS. Some of these variables are potentially related with the above welfare 
measure and will be used as covariates in a model for the welfare. 

The indicators of interest are poverty rates and gaps. For a given locality 𝑑, the poverty rate 
and gap are obtained respectively taking 𝛼 = 0,1 in the following expression 

𝐹𝛼𝑑 =
1

𝑁𝑑
∑

𝑁𝑑

𝑖=1

(
𝑧 − 𝐸𝑑𝑖

𝑧
)
𝛼

𝐼(𝐸𝑑𝑖 < 𝑧), 𝛼 ≥ 0. 

The poverty line, measured in terms of the above welfare measure, is 𝑧 = 10,027 ILS. Based 
on this poverty line, approximately 26% of the Palestinian population is below the line. 

Concerning population and sample sizes, after removing certain records with missing data, 
in the census we have 4,266,953 records and in the survey,  we have 18,383. With this 
sample size, the sampling fraction is about 43/10000. We have approximately half of the 
observations for each gender (9,119 for women and 9,244 for men). As to the sample size 
allocation by region, the West Bank is much better represented in the PECS, with 13,216 
observations (out of 2,395,774) in contrast with 5,147 for Gaza (out of 1,871,179). Even if 
the overall sampling fraction is not small, when we disaggregate by localities and gender, 
the sample sizes are actually really small, see Table 1 below. 

Table 1: Summary of PECS sample sizes of localities for each gender. 

 Min 1st Qu Median Mean 3rd Qu. Max 

Women 14 26 35 56.29 61.5 405 

Men 13 28 36 57.06 63.0 464 

Note that the poverty rate is a proportion. Consider the simple case of estimating a 
population proportion 𝑝 under simple random sampling with the sample proportion �̂�. 
With a true proportion around 𝑝 = 0.26 (poverty rate at the national level), the minimum 
sample size that we need to have an estimated coefficient of variation, CV(�̂�) =

√(1 − 𝑝)/(𝑝𝑛), below 20%, is 𝑛 = 71. According to Table 1, at least three quarters of the 

localities have a CV exceeding 20% for the two genders. This means that direct estimators 
are not reliable for all these localities. In fact, we computed Hájek estimator �̂�𝛼𝑑

HA of 𝐹𝛼𝑑  for 
each locality 𝑑 as in (4) of Section 3.1, noticing that our indicators can be expressed as area 

means 𝐹𝛼𝑑 = 𝑁𝑑
−1∑ 𝐹𝛼,𝑑𝑖

𝑁𝑑
𝑖=1  of the variables 
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𝐹𝛼,𝑑𝑖 = (
𝑧 − 𝐸𝑑𝑖

𝑧
)
𝛼

𝐼(𝐸𝑑𝑖 < 𝑧), 𝑖 = 1,… ,𝑁𝑑 . 

The resulting direct estimates of poverty rates and gaps take the value zero (because of 
zero individuals with welfare below the poverty line 𝑧) for 32 localities when looking at 
men and 29 for women. Thus, for those localities, direct estimates do not really make sense. 

The area-level Fay–Herriot model described in Section 3.2.1 uses as response variables the 
direct estimators, which are zero for many localities. For those localities, the estimates of 
the sampling error variances 𝜓𝑑  become also zero, which could be interpreted as no error, 
while these estimators are obviously subject to very large sampling error due to the small 
sample sizes. As a consequence, we get 𝛾𝑑 = 𝜎𝑢

2/(𝜎𝑢
2 + 𝜓𝑑) = 1 and the resulting EBLUPs 

based on this model, given in (9), reduce to the corresponding direct estimators for those 
localities, which make no sense and have also misleading error measures. In fact, even if we 
wished to estimate only for the localities where the direct estimates are not zero, the usual 
estimates of the MSEs of the EBLUPs based on the FH model require normality, and in this 
case the shape of the histograms of direct estimators (not shown here for brevity) is fairly 
different from the normal distribution. Consequently, these estimators are not 
recommended in this application. 

The mentioned problems of area-level models in this application and the very rich census 
microdata that are available make the unit-level models the most suitable small area 
techniques in this application. For this reason, we apply the Census EB method based on 
the unit-level nested error model given in (11), to find estimators of our poverty indicators 
for each locality, 𝐹𝛼𝑑 , for 𝛼 = 0,1, 𝑑 = 1, … , 𝐷. As response variable in the nested error 
model, we take the transformed welfare variables 𝑌𝑑𝑖 = 𝑇(𝐸𝑑𝑖) = log(𝐸𝑑𝑖 + 𝑐), for 
𝑐 = 1000. The distribution of the transformed welfare measures really looks like normal, 
see Figure 1 for women. For men the plot looks practically identical. 
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Figure 1: Histogram of welfare measure in the original scale (up) and after shift and log 
transformation (down), for women. 

As explanatory variables in the nested error model, we considered location descriptors, 
household characteristics, attributes of the household head, dwelling characteristics, and 
types of supplies and amenities. Concretely, we included indicators of region (Gaza, West 
Bank) and of type of locality (rural and urban, camp). Concerning the household 
characteristics, we included size, proportion of females and employed ratio. The considered 
attributes of the household head were indicators of being unemployed, of ever been 
employed in Israel/settlement, of ever been employed for the national government, of 
refugee status, of having some difficulty, of never attended school and of having education 
level higher than secondary. Dwelling characteristics included type of dwelling (villa, 
separate room, other), type of tenure (rented, other) and number of rooms. Finally, within 
commodities or supplies, we included the type of water, waste and heating systems. Finally, 
we included indicators of owing washing machine, freezer, microwave, dishwasher, 
LED/LCD TV, electricity fan, air conditioning, central heating, solar boiler, phone line, home 
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library, computer, iPad/tablet, and smartphone. Separate models were fitted for each 
gender, using exactly the same covariates for both. 

After fitting the models by REML, practically all the categories of the considered 
explanatory variables were significant for both genders and the 𝑅2 in the linear model for 
each gender was over 53% for both models. Let us now check the usual model 
assumptions. Unit level residuals from the model show a normal distribution, see Figure 2 
for men (plots are almost identical for women). Moreover, a scatterplot of model residuals 
versus predicted values, shown in Figure 3 for women, shows no pattern at all, which gives 
no indication against the linearity model assumption (similarly for men). Finally, the 
histogram and qq-normal plot of area-level residuals (predicted locality effects) displayed 
in Figure 4 neither show serious departure from the normality assumption of the area 
effects. 

 

Figure 2: Histogram (up) and qq-normal plot (down) of unit level residuals for men. 
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Figure 3: Unit level residuals versus fitted values in the model for women. 

Along with weighted direct (Hájek) estimates, since data does not indicate any model 
departure, Census EB predictors of poverty rates and gaps were computed based on the 
considered nested-error model. For the considered poverty indicators 𝛿𝑑 = 𝐹𝛼𝑑  for 𝛼 =
0,1, Census EB predictors can be computed analytically as 

�̂�𝛼𝑑
CEB =

1

𝑁𝑑
∑�̂�𝛼,𝑑𝑖

𝑁𝑑

𝑖=1

, 

where �̂�𝛼,𝑑𝑖 = 𝔼[𝐹𝛼,𝑑𝑖|𝐲𝑑𝑠; 𝛉] is the expectation of 𝐹𝛼,𝑑𝑖  with respect to the distribution of 

𝑌𝑑𝑖|𝐲𝑑𝑠, given by 

𝑌𝑑𝑖|𝐲𝑑𝑠 ∼ 𝑁(𝜇𝑑𝑖|𝑠, 𝜎𝑑𝑖|𝑠
2 ), 

with conditional mean and variance given by 

𝜇𝑑𝑖|𝑠 = 𝐱𝑑𝑖′𝛃 + 𝛾𝑑(𝑦𝑑𝑎 − 𝐱𝑑𝑎
𝑇
𝛃),

𝜎𝑑𝑖|𝑠
2 = 𝜎𝑢

2(1 − 𝛾𝑑) + 𝜎𝑒
2𝑘𝑑𝑖

2 .
 

For 𝛼 = 0,1, the expectations are respectively given by 

�̂�0,𝑑𝑖 = 𝛷(𝛼𝑑𝑖),

�̂�1,𝑑𝑖 = 𝛷(𝛼𝑑𝑖) {1 −
1

𝑧
[exp (𝜇𝑑𝑖|𝑠 +

𝜎𝑑𝑖|𝑠
2

2
)
𝛷(𝛼𝑑𝑖 − 𝜎𝑑𝑖|𝑠)

𝛷(𝛼𝑑𝑖)
− 𝑐]} ,

 

where 𝛷(⋅) is the cdf of a standard normal random variable and 𝛼𝑑𝑖 = [log(𝑧 + 𝑐) −
𝜇𝑑𝑖|𝑠]/𝜎𝑑𝑖|𝑠, for 𝜇𝑑𝑖|𝑠 and 𝜎𝑑𝑖|𝑠

2  defined above. 
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Figure 4: Histogram (up) and qq-normal plot (down) of area-level residuals (predicted 
locality effects) for men. 

Let us now compare the resulting direct and Census EB estimates. Figure 5 displays Census 
EB estimates against direct estimates of locality poverty rates (up) and poverty gaps 
(down), for women. First of all, we can see the unreasonable zero values of the direct 
estimates for many localities. Census EB estimates do not take the value zero for any of the 
localities. On the other hand, we know that direct estimates are approximately unbiased for 
the localities with large sample sizes, when averaging across all the possible samples 
drawn with the same sampling mechanism. These plots show Census EB estimates for the 
sampled localities distributed around the line of equality with direct estimates, which 
suggests no serious systematic design bias of Census EB estimates. However, in the plot for 
the poverty rates (up), there appear a couple of points on the right that are further apart 
from the rest, indicating a much larger direct estimate of poverty rate than the 
corresponding Census EB estimate. Since in applications with real data the true values 
cannot be known, it is impossible to know whether direct estimates are overstating or 
Census EB estimates are understating the poverty rate for those localities. For men, 
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conclusions are basically the same. Even if the models for both genders seem to fit very 
well in this application, perhaps model refinements can still be found. 

 

Figure 5: Census EB estimates versus weighted direct ones for locality percent poverty rates 
(up) and poverty gaps (down). 

Now it is important to mention the huge differences in the estimated poverty indicators by 
region. Figure 6 shows boxplots of the locality poverty rates (up) and gaps (down) for 
women, for Gaza and West Bank. The median EB estimate of poverty rate for Gaza is about 
55%, compared to 8.3% for West Bank. For the poverty gap, the median EB estimate is 
17.4% for Gaza and 1.5% for West Bank. This great differences in the estimates leads us to 
analyze the remaining results separately for each region. 
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Figure 6: Boxplots of Census EB estimates of locality percent poverty rates (up) and percent 
poverty gaps (down). 

Let us now compare the quality of Census EB and weighted direct estimates. In order to 
have comparable accuracy measures, we estimated the MSE for both types of estimators 
using exactly the same procedure. Concretely, we applied the parametric bootstrap method 
described in Section 3.2.3. Since previous poverty estimates were given in percentage, MSE 
estimates are now given × 104. Figure 7 displays boxplots of the estimated MSEs for the 
two types of estimators, for women (up) and men (down) for the sampled localities. In the 
case of women, the median of the estimated MSEs of direct estimates is 47, compared with 
6.7 for Census EB. For men, the median estimated MSEs are 45.8 and 5.5 for direct and 
Census EB respectively. If we look at the estimated MSEs for each locality (see Figure 8), 
the average percent decrease in estimated MSE of Census EB estimates with respect to 
direct estimators is 84% in the case of poverty rate. Moreover, there is gain in efficiency of 
Census EB estimates in all the localities except for one (although for that locality there is 
practically no loss). For poverty gaps, the gains are even larger on average. 
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Figure 7: Boxplots of estimated MSEs of weighted direct and Census EB estimates of locality 
poverty rates for women (up) and men (down). 
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Figure 8: Estimated MSEs of weighted direct and EB estimators of poverty rates for each 
sampled locality in West Bank (up) and Gaza (down), for women. Localities are sorted from 
smaller to larger sample sizes, with locality sample sizes indicated in the 𝑥-axis labels. 

 

 

Let us now compare Census EB and direct estimates for each sample locality. Figure 9 
shows the two types of estimates of poverty rate for the sampled localities in West Bank 
(up) and Gaza (down), with localities (in 𝑥-axis) sorted from smaller to larger sample sizes, 
and with sample sizes indicated in the 𝑥-axis labels. See the much greater instability of 
direct estimates compared with Census EB ones in the two regions. We can also see the 
zero direct estimates for many localities. Summarizing, Census EB estimators are much 
more efficient than direct estimators for practically all the localities, more stable across 
localities, never take unreasonable zero values and seem not be seriously biased across the 
possible samples. 
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Figure 9: Weighted direct and Census EB estimates of poverty rates for each sampled locality 
in West Bank (up) and Gaza (down), for women. Localities are sorted from smaller to larger 
sample sizes, with locality sample sizes indicated in the 𝑥-axis labels. 

 

 

Next, we compare the Census EB estimates for men and women. Looking at Figure 10, 
showing estimated poverty rates for West Bank (up) and Gaza (down), we can see only 
slight differences between estimates for the two genders. Although about 70% of the 
localities in West Bank have larger poverty rates for women (in 30% they are larger for 
men), Gaza does not practically show gender differences. Conclusions are similar for 
poverty gaps (Figure 11). 
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Figure 10: Census EB estimates of poverty rates for each sampled locality in West Bank (up) 
and Gaza (down), for men and women. Localities are sorted from smaller to larger sample 
sizes, with locality sample sizes indicated in the 𝑥-axis labels. 
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Figure 11: Census EB estimates of poverty gaps for each sampled locality in West Bank (up) 
and Gaza (down), for men and women. Localities are sorted from smaller to larger sample 
sizes, with locality sample sizes indicated in the 𝑥-axis labels. 
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Finally, the following tables summarize the Census EB predictor model as fitted by REML. 

Coeffficients Value Std.Error 𝑡-value 𝑝-value 

(Intercept) 9.129654 0.07032788 129.81557 0.0000∗∗∗ 

regionWest Bank 0.163741 0.02971331 5.51069 0.0000∗∗∗ 

loctype2.f3 -0.124346 0.03326557 -3.73797 0.0003∗∗∗ 

hhsize_ae -0.125092 0.00332163 -37.65991 0.0000∗∗∗ 

femalep -0.104234 0.02347222 -4.44075 0.0000∗∗∗ 

head_age 0.010015 0.00218386 4.58577 0.0000∗∗∗ 

head_age2 -0.000089 0.00002159 -4.13964 0.0000∗∗∗ 

head_refugstatRegistered refugee -0.009893 0.00939727 -1.05277 0.2925 

head_refugstatUn-registered refugee 0.100793 0.03590492 2.80721 0.0050∗∗ 

head_diffYes -0.148510 0.01854243 -8.00918 0.0000∗∗∗ 

head_neverschoolYes -0.060934 0.02491440 -2.44574 0.0145∗ 

head_secondaboveYes 0.038375 0.00939718 4.08363 0.0000∗∗∗ 

employed_ratio 0.220275 0.02344003 9.39738 0.0000∗∗∗ 

head_unemployed.f1 -0.094549 0.02014352 -4.69376 0.0000∗∗∗ 

head_employisrasett.f1 0.104872 0.01103657 9.50224 0.0000∗∗∗ 

head_employnatgov.f1 0.023796 0.01004289 2.36947 0.0178∗ 

dwelltype2.fSeparate room -0.300266 0.19087919 -1.57307 0.1157 

dwelltype2.fVilla 0.241097 0.04346100 5.54744 0.0000∗∗∗ 

tenure2.fRented -0.060497 0.01626722 -3.71894 0.0002∗∗∗ 

rooms 0.050280 0.00362796 13.85913 0.0000∗∗∗ 

water_bottled 0.219500 0.02850772 7.69967 0.0000∗∗∗ 

wasteOthers 0.083603 0.03113443 2.68523 0.0073∗∗∗ 

wasteThrowing in the container 0.070630 0.03035760 2.32659 0.0200∗ 

wasteThrowing outside 0.108581 0.04704006 2.30827 0.0210∗ 

heating2.fDiesel 0.482247 0.09170628 5.25860 0.0000∗∗∗ 

heating2.fElectricity -0.053199 0.02067120 -2.57358 0.0101∗ 

heating2.fGas -0.044206 0.02161235 -2.04540 0.0408∗ 

heating2.fNot available -0.140460 0.02233715 -6.28818 0.0000∗∗∗ 

heating2.fOther 0.160004 0.09648764 1.65828 0.0973. 

heating2.fWood -0.057447 0.02137587 -2.68747 0.0072∗∗ 

freezer_ysno.f1 0.075935 0.01149020 6.60871 0.0000∗∗∗ 

microwave_ysno.f1 0.027830 0.00863602 3.22259 0.0013∗∗ 

dishwasher_ysno.f1 0.060347 0.02141698 2.81773 0.0048∗∗ 

tv_ledlcd_ysno.f1 0.120884 0.00843869 14.32496 0.0000∗∗∗ 
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electric_fan_ysno.f1 0.070604 0.01205076 5.85887 0.0000∗∗∗ 

air_conditioner_ysno.f1 0.130964 0.00989567 13.23450 0.0000∗∗∗ 

central_heating_ysno.f1 -0.070338 0.04254488 -1.65326 0.0983. 

solar_boiler_ysno.f1 0.029272 0.00827522 3.53728 0.0004∗∗∗ 

phone_line_ysno.f1 0.075816 0.00866141 8.75331 0.0000∗∗∗ 

home_library_ysno.f1 0.073284 0.01172368 6.25092 0.0000∗∗∗ 

computer_ysno.f1 0.067749 0.00828415 8.17817 0.0000∗∗∗ 

ipad_tablet_ysno.f1 0.080382 0.00912558 8.80841 0.0000∗∗∗ 

smartphone_ysno.f1 0.120630 0.01124397 10.72840 0.0000∗∗∗ 

washing_machine_ysno.f1 0.033221 0.01861235 1.78488 0.0743. 

 

Observations 

 

9,244 

Log-likelihood -3,027.861 

AIC 6,147.722 

BIC 6,475.562 

�̂�𝑢 0.1203215 

�̂�𝜀 0.3254558 
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4- Final remarks and recommendations 

Direct estimators are (at least approximately) unbiased under the sampling replication 
mechanism and do not require model assumptions. This is great when estimating in 
subpopulations with large sample sizes. However, for domains or areas with small sample 
size, they can take unreasonable values and can be highly unstable, possibly leading to 
serious changes in the estimates from one period to the next. Thus, they are of limited 
practical usefulness for small areas. 

On the other hand, small area estimators based on models are obtained using the 𝑛 
observations from all of the areas or domains in the survey, where 𝑛 is typically much 
larger than the target area sample size 𝑛𝑖 . For this reason, model-based estimators are 
much more efficient. Unit-level models allow to estimate general monetary poverty 
indicators (perhaps several indicators using the same fitted model) and disaggregate the 
estimates at any other disaggregation level. In our application, the obtained Census EB 
estimates based on the nested error model take reasonable values for all the localities of 
interest, seem to be absent of serious systematic design bias and have smaller estimated 
MSEs than the corresponding direct estimators for nearly all the localities, with an average 
MSE reduction of 84% for poverty rates and even greater reduction for poverty gaps. 

Model-based procedures require a thorough checking of the model assumptions for the 
actual data. In our application with Palestinian data, the considered model seems to fit 
really well the available data. However, slight model variations can be further explored, 
such as changing some of the covariates or trying with different groupings of the categories 
of these covariates. We have considered separate models for the two genders and included 
fixed region effects. However, gender differences are pretty small, whereas region 
differences are substantial. Separate modeling for the two regions but common for the two 
genders (so that sample sizes are not further reduced) could be also explored in this 
application. The types of models that one can consider in a given data application depends 
mainly on the shape of the auxiliary information and on the mathematical expressions of 
our target indicators. Of course, for the same available data sources and indicators, possibly 
different types of modelling can be applied. Although estimates derived from different 
models obviously cannot coincide exactly owing to the error inherent with any statistical 
figure, if the considered models fit well the available data, the corresponding estimates 
should agree to some extent. 

In the application, we have estimated poverty rates and gaps, but any other poverty 
indicator based on the same welfare measure can be estimated without much more effort 
based on the same fitted model. However, indicators that depend on several characteristics 
together, such as multidimensional poverty indicators, have rarely been treated in the 
small area estimation literature and deserve special attention. Efficient estimation methods 
depending on several models at the same time (for the different variables involved in the 
indicator) or based on multivariate models that need to be developed for this problem. 

In our application, we have derived estimates and their corresponding MSEs only for the 
sampled localities, i.e., those appearing in the PECS. Even if models allow to produce 
estimates also for non-sampled areas, we do not recommend it since model checking is not 
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possible for those localities (they could be outlying). For fixed values of the model 
covariates, design biases of model-based estimators tend to increase as the sample size 
decreases, so in those localities this design bias could be significant. 
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