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The Rationale
• Availability at national level on poverty is dramatically 

scarce worldwide
• From the WB WDI database: poverty gap and headcount at 

5.50 USD is available only for around 29% of data points in 
the last twenty years and 24% for NPL: these are less than 
10% for the 20 ESCWA MCs

• The information at the disaggregated level (i.e. sex and 
geographic area) is practically unavailable 

• Therefore, the motto of ‘leaving none behind’ appears as a 
mere daydream if it is not accompanied by specific actions 
aimed at improving data quality and availability
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The Rationale
• Main issues

– not all countries conduct household surveys
– high data collection and processing costs 
– lack of timeliness in data availability 
– different timing and frequency of data collection 
– uncertainty in the survey  cycle
– lack of inter-comparability of surveys among countries 
– different impacts of measurement errors
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Remote Sensing



Views from the Above During Night
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Remote Sensing During Nights

• Intensity of night lights linked by literature to:
a) GDP per capita, Prices, PPP (+); ECON.
b) Poverty rates (-); SOCIAL
c) Population and migration flows (+); DEMOGR.
d) Emissions, pollution, land degradation etc. (+); ENVIRON. 
e) Others (+,-), i.e. Wars, Smuggling, 

Informal activities, Tourism, Urbanization
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Application to Poverty

• Seminal paper by Elvidge et al. (2009)
• Use LandScan (source for Population annual data) and 

DMSP-OLS data of NASA (lights during night), both at 1 sq
km resolution

• Derive a Poverty Index given by 
• Obtain a calibration between PI and official poverty rates 

drawn from WDI, which is then applied to obtain maps of 
poverty
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Application to Poverty
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Application to Poverty
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Our Applications to Poverty

• With fractional (unbalanced) panel-data model: 
to obtain yearly maps of poverty rates in the LAC 
region …

• … at virtually 1 square km using DMSP-OLS 
images …

• … where official data are available only for some 
scattered years, and mostly at national level
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Our Approach

• Fractional response (unbalanced) panel-data 
model

• Exogenous variables are constructed only with 
observed night lights and population
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Our Approach

• Candidates exogenous:
– Standard measures of lights (sum and mean, and the corresponding 

per-capita values)
– Dispersion measures (the Gini and the Bonferroni indices, the mean 

log deviation, the inter-quintile diference as well as the standard 
deviation of lights)

– Measures of urbanization, as proxied by night lights intensities
– Population density

• Estimation of panel model at national level, and application of 
coefficients to night lights indicators observed at finer geographical 
detail, ideally 1 sq. km (strong assumption: no MAUP)
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Application: Night Lights in LAC, 1993 (left) & 
2013 (right)
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Application: Poverty Gap in LAC
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Another Application of Night Lights

• With fractional multinomial logit models and 
night lights: to obtain monthly poverty maps of 
Chile (extreme, non-extreme and non poverty) …

• … at virtually 0.5 square km, with VIIRS satellite 
data …  

• … where official data are available every 2-5 years 
and cover only part of municipalities of Chile
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Applications: Poverty rates in Santiago, Chile
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Applications of Night Lights with Other BD
• Jean et al. (2016) use survey and satellite day-and-night lights from five 

African countries - Nigeria, Tanzania, Uganda, Malawi, and Rwanda - to 
show how a convolutional neural network can be trained (machine 
learning) to identify image features that can explain up to 75% of the 
variation in local-level economic outcomes. The method, which requires 
only publicly available data, could transform efforts to track and target 
poverty in developing countries

• Steele et al (2017) use overlapping sources of remote sensing, mobile 
operator call detail records and traditional survey-based data from 
Bangladesh to provide a systematic evaluation of the extent to which 
different sources of input data can accurately estimate different measures 
of poverty
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Conclusions
• Spatially disaggregated maps of poverty indicators, especially if updated 

on an annual or higher frequency, would be extremely beneficial for 
tracking the effectiveness of poverty-reduction efforts in specific areas, 
evaluating the consequences of natural disasters, conflicts or other 
general policy purposes

• Satellite images in the form of night lights could help in better 
understanding poverty and its space-temporal dynamics

• These information could be combined with traditional survey or census 
sources, as well as other Big Data sources, to better understand poverty 
developments

• Areas for further work might include cost-benefit evaluations of these 
combined use of official and Big Data sources, as well as evaluation of 
impacts of MAUP on small area estimation
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