

- The Importance of Coal
- IEA Annual Coal Questionnaire
- Data Consistency Checks

■ Uses of the Data

■ Coal provides a large share of the world energy supply

■ Potential to contribute even more

■ Must address environmental challenges

1973

Combustible

6,111 Mtoe

2009

TPES doubled and coal more than doubled

WORLD FUEL SHARES OF ELECTRICITY

1973

6115 TWh

2009

20055 TWh

Electricity generation more than triple, with coal holding its own

■ Ash, volatile matter, sulphur, nitrogen, trace elements

- Blended to produce different performance characteristics
- Soft coking coal and steam coal prices have been related

PRIMARY AND DERIVED COAL AND PEAT PRODUCTS

PRIMARY FUELS	Anthracite	SOLID FOSSIL FUELS
	Coking Coal	
	Other Bituminous Coal	
	Sub-bituminous Coal	
	Lignite/Brown Coal	
	Peat	
DERIVED and MANUFACTURED PRODUCTS	Patent Fuels	
	Coke Oven Coke	
	Gas Coke	
	Coal Tar	
	BKB/Peat Briquettes	
	Gas Works Gas	MANUFACTURED GASES
	Coke Oven Gas	
	Blast Furnace Gas	
	Oxygen Steel Furnace Gas	

- Hard Coal
- Gross calorific value greater than $\mathbf{2 3 , 8 6 5} \mathbf{~ k J} / \mathbf{k g}$
- Mean random reflectance of vitrinite of at least 0.6
- Anthracite
- Bituminous
- Coking coal
- Sub-Bituminous Coal
- Gross calorific value 17,435-23,865 kJ/kg
- Mean random reflectance of vitrinite less than 0.6
- Lignite/Brown Coal
- Gross calorific value less than $17,435 \mathrm{~kJ} / \mathrm{kg}$
- Mean random reflectance of vitrinite less than 0.6
- Anthracite
- Gross calorific value is greater than $\mathbf{2 3 , 8 6 5} \mathbf{k J} / \mathbf{k g}$
- Less than 10\% volatile matter
- High carbon content (about 90\% fixed carbon)
- Mean random reflectance of vitrinite at least 2.0\%
- Non-agglomerating
- Coking Coal
- Bituminous coal that allows its use to produce coke
- Gross calorific value is greater than $23,865 \mathrm{~kJ} / \mathbf{k g}$
- Mean random reflectance of vitrinite of at least 0.6
- Other Bituminous Coal
- Coal used for steam raising purposes
- Higher volatile matter (more than 10\%)
- Lower carbon content (less than 90\% fixed carbon)
- Gross calorific value is greater than $23,865 \mathrm{~kJ} / \mathrm{kg}$
- Mean random reflectance of vitrinite of at least $\mathbf{0 . 6}$

UPGRADED COALS

- Patent Fuels
- Manufactured from hard coal fines
- With the addition of a binding agent
- Patent fuel produced may be higher than the amount of coal used
- BKB (Brown Coal Briquettes)
- A composite fuel manufactured from lignite/brown coal
- Produced under high pressure without a binding agent
- Includes peat briquettes, dried lignite fines and dust

UPGRADED COALS

- Coal Tar
- Liquid result of distillation of bituminous coal during the coke oven process or of the low-temperature carbonisation of brown coal
- Coal tar can be further distilled into different organic products (as benzene, toluene, naphthalene), which normally would be reported as a feedstock to the petrochemical industry
- A solid product
- From carbonized coal, principally coking coal
- At high temperature
- Low in moisture and volatile matter
- Used mainly in the iron and steel industry

■ Requires inputs of coking coal to coke ovens in the Transformation sector

- Inputs of other fuels may also be reported on the other questionnaires
- Gas Work Gas
- Produced in plants whose main purpose is to manufacture, transport and distribute gas.
- Blast Furnace Gas
- Produced during combustion of coke in blast furnaces in iron and steel industry
- Oxygen Steel Furnace Gas
- By-product of the production of steel in an oxygen furnace
- Also known as converter gas, LD gas or BOS gas

TRANSFORMATION VS. ENERGY SECTORS

- Transformation Sector
- Fuel used for the primary or secondary conversion of energy
- Transformed to make derived energy products
- Energy Sector
- Fuels consumed by the energy industry to support
- fuel extraction
- plant operations of transformation activities

TYPES OF ELECTRIC AND HEAT PLANTS

	Electricity Only	CHP	Heat Only
Main Activity Producer		Report all electricity and heat produced and all fuel used	Report all heat produced and all fuel used
Autoproducer	Report all production and all fuel used	Report all electricity produced and heat sold with corresponding fuel used	Report heat sold and corresponding fuel used

STRUCTURE OF THE COAL QUESTIONNAIRE

- Table 1. Supply, Transformation, Energy and Final Consumption

■ Table 2. Imports by Origin
■ Table 3. Exports by Destination

- Table 4. Calorific Values

Domestic Supply

Production
+Import

- Export
- International Marine
Bunkers +Stock Changes

Gross Consumption

Transformation Sector (14 subsectors)
+Energy Sector (10 sub-sectors)

- Distribution Losses
+Final Consumption
+Industry Sector (13 sub-
sectors)
+Transport (3 sub-sectors)
+Other Sectors (5 sub-
sectors)
+Non Energy Uses

Domestic Supply - Gross Consumption = Statistical Difference (Inland Consumption)

TABLE 1. ENERGY SECTOR

 AND FINAL CONSUMPTION| SUPPLY AND TRANSFORMATION SECTOR | | Coking Coal | Other Bituminous Coal | Subbituminous Coal |
| :---: | :---: | :---: | :---: | :---: |
| | | $10^{2} \mathrm{t}$ | $10^{2} \mathrm{t}$ | $10^{2} \mathrm{t}$ |
| | | B | C | D |
| ENERGY SECTOR AND FINAL CONSUMPTION | | | | |
| Energy Sector | 29 | 0 | 0 | 0 |
| Own Use in Electricity, CHP and Heat Plants | 30 | 0 | 0 | 0 |
| Coal Mines | 31 | 0 | 0 | 0 |
| Patent Fuel Plants (Energy) | 32 | 0 | 0 | 0 |
| Coke Ovens (Energy) | 33 | 0 | 0 | 0 |
| BKB Plants (Energy) | 34 | 0 | 0 | 0 |
| Gas Works (Energy) | 35 | 0 | 0 | 0 |
| Blast Furnaces (Energy) | 36 | 0 | 0 | 0 |
| Petroleum Refineries | 37 | 0 | 0 | 0 |
| Coal Liquefaction Plants (Energy) | 38 | 0 | 0 | 0 |
| Non-specified (Energy) | 39 | 0 | 0 | 0 |
| | | | | |
| Distribution Losses | 40 | 0 | 0 | 0 |
| | | | | |
| Total Final Consumption | 41 | 0 | 623 | 0 |
| | | | | |
| Total Non-Energy Use | 42 | 0 | 0 | 0 |
| Non-Energy Use Industry/Transformation/Energy | 43 | 0 | 0 | 0 |
| Of which: Non-Energy Use- | 44 | 0 | 0 | 0 |
| Non-Energy Use in Transport | 45 | 0 | 0 | 0 |
| Non-Energy Use in Other Sectors | 46 | 0 | 0 | 0 |

COKE OVEN DATA

		Coking Coal	Other Bituminous Coal	Coke Oven Coke	Coal Tar	Gas Vorks Gas	$\begin{aligned} & \text { Coke } \\ & \text { Oven } \\ & \text { Gas } \end{aligned}$	$\begin{aligned} & \text { Blast } \\ & \text { Furnace } \\ & \text { Gas } \end{aligned}$
SUPPLY AND TRANSFORMATION SECTOR		10**	10\%	10\%	10\%	$\begin{gathered} \text { TJ } \\ \text { faross) } \end{gathered}$	$\underset{\text { Tgross) }}{\text { TJ }}$	$\begin{gathered} \text { TJ } \\ \text { faross) } \end{gathered}$
		B	c	497	18	L 1.185	$4,568$	N
Indigenous Production	1	0	667					5,230
Onluergrounuriouucturn	2	0	667					
Surface Production	3	0	0				\longrightarrow	
From Other Sources	4	0	0	0	0	0	0	0
Total Imports (Balance)	5	718	6,384	0	0	0	0	0
Total Exports (Balance)	6	0	0	12	0	0	0	0
International Marine Bunkers	7	0	0	0	0	0	0	0
Stock Changes (National Territory)	8	-43	0	29	-1	-119	0	0
Inland Consumption (Calculated)	9	675	7,051	514	17	1,066	4,568	5,230
Statistical Differences	10	0	456	0	0	0	0	0
MEMO ITEM: From other sources								
From Other Sources - Oil	11			0	0	0	0	0
From Other Sources - Natural Gas	12			0	0	0	0	0
From Other Sources - Renewables	13			0	0	0	0	0
Transformation Sector	14	675	5,972	491	0	0	959	0
Main Activity Producer Electricity Plants	15	0	5,965	0	0	0	0	0
Main Activity Producer CHP Plants	16	0	0	0	0	0	0	0
Main Activity Producer Heat Plants	17	0	0	0	0	0	0	0
Autoproducer Electricity Plants	18	0	7	0	0	0	0	0
Autoproducer CHP Plants	19	0	0	0	0	0	0	0
Autoproducer Heat Plants	20	0	0	0	0	0	0	0
Oatant Eunlolante CTanoformation)	21	0	0	0	0	0	0	0
Coke Ovens (transformation	22	675	0	0	0	0	0	0
ono mants (tramsturmatum)	23		0	0	0	0	0	0
Gas Works (Transformation)	24	\bigcirc	0	0	0	0	0	0
Blast Furnaces (Transformation)	25	0	0	491	0	0	959	0
Coal Liquefaction Plants (Transformation)	26	0	0	0	0	0	0	0
For Blended Natural Gas	27					0	0	0
Non-specified (Transformation)	28	0	0	0	0	0	0	0

COKE OVEN DATA

		Coking Coal	Other Bituminous Coal	Coke Oven Coke	Coal Tar	Gas Works Gas	Coke Oven Gas	Blast Furnace Gas
SUPPLY AND TRANSFORMATION SECTOR		$10^{3} \mathrm{t}$	$10^{3} \mathrm{t}$	$10^{3} \mathrm{t}$	$10^{3} \mathrm{t}$	TJ (gross)	TJ (gross)	TJ (gross)
		B	C	H	J	L	M	N
ENERGY SECTOR AND FINAL CONSUMPTION								
Energy Sector	29	0	0	0	17	0	476	3,454
Own Use in Electricity, CHP and Heat PIa	30	0	0	0	0	0	0	0
Coal Mines	31	0	0	0	0	0	0	0
Patent Fuel Plants (Energy)	32	0	0	0	0	0		0
Coke Ovens (Energy)	33	0	0	0	0	0	476	3.454
BKB Plants (Energy)	34	0	0	0	0	0		0
Gas Works (Energy)	35	0	0	0		0	0	0
Blast Furnaces (Energy)	36	0	0	0	17	0	0	0
Petroleum Refineries	37	0	0	0	v	0	0	0
Coal Liquefaction Plants (Energy)	38	0	0	0	0	0	0	0
Non-specified (Energy)	39	0	0	0	0	0	0	0
Distribution Losses	40	0	0	0	0	0	0	1,044
Total Final Consumption	41	0	623	23	0	1,066	3,133	732
Total Non-Energy Use	42	0	0	0	0	0	0	0
Non-Energy Use Industry/Transformation/	43	0	0	0	0	0	0	0
Of which: Non-Energy UseChemical/Petrochem	44	0	0	0	0	0	0	0
Non-Energy Use in Transport	45	0	0	0	0	0	0	0
Non-Energy Use in Other Sectors	46	0	0	0	0	0	0	0

COKE OVEN DATA

		Coking Coal	Other Bituminous Coal	Coke Oven Coke	Coal Tar	Gas Works Gas	Coke Oven Gas	$\begin{gathered} \text { Blast } \\ \text { Furnace } \\ \text { Gas } \end{gathered}$
SUPPLY AND TRANSFORMATION SECTOR		$10^{2} \mathrm{t}$	$10^{2} \mathrm{t}$	$10^{2} \mathrm{t}$	$10^{2} \mathrm{t}$	$\begin{gathered} \text { TJ } \\ \text { (gross) } \end{gathered}$	$\begin{gathered} \text { TJ } \\ \text { (gross) } \end{gathered}$	$\begin{gathered} \text { TJ } \\ \text { (gross) } \end{gathered}$
		B	C	H	J	L	M	N
ENERGY END USE SPECIFICATION								
Final Energy Consumption	47	0	623	23	0	1,066	3,133	732
Industry Sector	48	0	599	23	0	0	5,133	732
Iron and Steel	49	0	0	0	0	-	3,133	732
Chemical (including Petrochemical)	50	0	0	0	0	8		0
Non-Ferrous Metals	51	0	0	0	0	0	\bigcirc	0
Non-Metallic Minerals	52	0	332	0	0	0	0	0
Transport Equipment	53	0	0	0	0	0	0	0
Machinery	54	0	0	-	0	0	0	0
Mining and Quarrying	55	0	81	19	0	0	0	0
Food, Beverages and Tobacco	56	0	0	1	0	0	0	0
Paper, Pulp and Printing	57	0	12	0	0	0	0	0
Wood and Wood Products	58	0	0	0	0	0	0	0
Construction	59	0	0	0	0	0	0	0
Textiles and Leather	60	0	0	- 0	0	0	0	0
Non-specified (Industry)	61	0	174	4	0	0	0	0
Non-specined(Industry)								
Transport Sector	62	0	0	0	0	0	0	0
Rail	63	0	0	0	0	0	0	0
Domestic Navigation	64	0	0	0	0	0	0	0
Non-specified (Transport)	65	0	0	0	0	0	0	0
Other Sectors	66	0	24	0	0	1,066	0	0
Commercial and Public Services	67	0	6	0	0	575	0	0
Residential	68	0	0	0	0	491	0	0
Agriculture/Forestry	69	0	0	0	0	0	0	0
Fishing	70	0	18	0	0	0	0	0
Non-specified (Other)	71	0	0	0	0	0	0	0

Table 2
 Imports
 - 66
 Countries
 of Origin

Table 3
 Exports
 - 73

Countries
of
Destination

- 5 'Other' Regions

		Anthracite	Coking Coal	Other Bituminous Coal	Sub- bituminous Coal	Lignite/Brown Coal	Patent Fuel	Coke Oven Coke	Coal Tar	BKB/PB
		$10^{3} \mathrm{t}$								
		A	B	C	D	E	F	G	H	,
Albania	1	0	0	0	0	0	0	0	0	0
Armenia	2	0	0	0	0	0	0	0	0	0
Australia	3	0	421	196	0	0	0	0	0	0
Austria	4	0	0	0	0	0	0	0	0	0
Azerbaijan	5	0	0	0	0	0	0	0	0	0
Belarus	6	0	0	0	0	0	0	0	0	0
Belgium	7	0	0	0	0	0	0	0	0	0
Bosnia and Herzegovina	8	0	0	0	0	0	0	0	0	0
Bulgaria	9	0	0	0	0	0	0	0	0	0
Canada	10	0	297	122	0	0	0	0	0	0
China, People's Republic	11	0	0	0	0	0	0	0	0	0
Colombia	12	0	0	4,433	0	0	0	0	0	0
Croatia	13	0	0	0	0	0	0	0	0	0
Cyprus	14	0	0	0	0	0	0	0	0	0
Czech Republic	15	0	0	0	0	0	0	0	0	0
Denmark	16	0	0	0	0	0	0	0	0	0
Estonia	17	0	0	0	0	0	0	0	0	0
Finland	18	0	0	0	0	0	0	0	0	0
France	19	0	0	0	0	0	0	0	0	0
Georgia	20	0	0	0	0	0	0	0	0	0
Germany	21	0	0	0	0	0	0	0	0	0
Greece	22	0	0	0	0	0	0	0	0	0
Hungary	23	0	0	0	0	0	0	0	0	0
Iceland	24	0	0	0	0	0	0	0	0	0
Indonesia	25	0	0	528	0	0	0	0	0	0
Ireland	26	0	0	0	0	0	0	0	0	0
Israel	27	0	0	0	0	0	0	0	0	0
Italy	28	0	0	0	0	0	0	0	0	0

TABLE 3. EXPORTS BY DESTINATION

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \& Anthracite
\[
10^{3} \mathrm{t}
\] \& Coking Coal
\[
10^{3} \mathrm{t}
\] \& \begin{tabular}{c|}
\hline Other \\
Bituminous \\
Coal \\
\(10^{3} \mathrm{t}\) \\
\hline
\end{tabular} \& \begin{tabular}{c|}
\hline Sub. \\
bituminous \\
Coal \\
\(10^{3} \mathrm{t}\) \\
\hline
\end{tabular} \& \begin{tabular}{|c|}
\hline Lignit/Brow \\
n Coal \\
\\
\(10^{3} \mathrm{t}\) \\
\hline
\end{tabular} \& Patent Fuel
\[
10^{3} \mathrm{t}
\] \& \(\qquad\) \& Coal Tar
\[
10^{3} \mathrm{t}
\] \& BKB/PB

$10^{3} \mathrm{t}$

\hline \& \& A \& , \& C \& D \& , \& F \& G \& H \& 1

\hline Albania \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline Algeria \& 2 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline Argentina \& 3 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \&

\hline Armenia \& 4 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \&

\hline Australia \& 5 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline Austria \& 6 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline Azerbajan \& 7 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline Belarus \& 8 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline Belgium \& 9 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline Bosnia and Herzegovina \& 10 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline Brazil \& 11 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline Bulgaria \& 12 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline Canada \& 13 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline Chile \& 14 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline China, People's Republic \& 15 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline Chinese Taipei \& 16 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline Croatia \& 17 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline Cyprus \& 18 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline Czech Republic \& 19 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline Denmark \& 20 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline Egypt \& 21 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \&

\hline Estonia \& 22 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \&

\hline Finland \& 23 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline France \& 24 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline
\end{tabular}

TABLE 4. CALORIFIC VALUES

15 Primary and derived coal products -Production
-Imports
-Exports
-Used in Coke Ovens
-Used in Blast Furnaces
-Used in main Activity Plants
-Used in Industry
-For Other Uses

TABLE 4. CALORIFIC VALUES

		Anthracite MJItonne	CokingCoal MJItonne	Other Bituminous Coal MJItonne	Sub- bituminous Coal MJtonne	Lignite Brown Coal MJItonne	Peat MJtonne	Patent Fuel MJItonne	Coke Oven Coke MJtonne	Gas Coke MJItonne	Coal Tar MJtonne	BKBPB* MJItonne
		A	B	C	D	E	F	G	H	1	J	IMJionne
Production	gross 1	0		7,348	0	0	0	0	28,790	$\binom{43,514}{41,338}$		
	net 2	0		16,481	0	0	0	0	27,350			
Imports	gross 3	0	30,125	25,054	0	0	0		0			0
	net 4	0	28,619	23,801	0	0	0	0	0			0
Exports	gross 5	0	0	0	0	0	0	$\begin{array}{r} 20,913 \\ 19,867 \end{array}$		-		
	net 6	0	0	0	0	0	0					
Used in coke ovens	gross 7	0	30,125	0	0	0	0	0	0			0
	net 8	0	28,619	0	0	0	0	0	0			0
Used in blast furnaces	gross 9	0	0	0	0	0	0	0	28,790		43,514	0
	net 10	0	0	0	0	0	0	0	27,350	-	41,338	0
Used in Main Actinty Plants	gross 11	0	0	24.404	0	0	0	0	0			0
	net 12	0	0	23,184	0	0	0	0	0			0
Used in industry	gross 13	0	0	26,748	0	0	0	0	28,790			0
	net 14	0	0	25,411	0	0	0	0	27,350			0
For Other Uses	gross 15	0	30,125	0	0	0	0	0	0			0
	net 16	0	28,619	0	0	0	0	0	0	0		0

RELATIONSHIPS

Table Relations within the Coal Questionnaire

- Integers, negative numbers, sums
- Percentage differences with prior year
- Comparisons to other questionnaires
- Calorific values
- Net vs. gross calorific values
- Statistical difference
- Transformation efficiency rates
- Shares of coke oven outputs
- Shifts in product classification
- Breaks in series
- Trade data coincides with trade partners

USES OF THE DATA

■ Coal Information book

- Electronic online files

■ Energy balances
■ Environmental issues
■ Data support for other IEA divisions/other organizations
\square Country reviews
■ Assessing security of supply
■ Making policy and business decisions

- The IEA also publishes quarterly coal production and trade data (volume)
- Hard coal and brown coal production
- Coal imports and exports by types and trade partners

■ It is difficult to access timely data for some countries
■ Your assistance in identifying appropriate sources and contacts would be appreciated

- IEA points of contact
- Rachael Hackney
- ces@iea.org

Thank you

COALAQ@iea.org

