RENEWABLE ENERGY IN DESALINATION AND ELECTRICITY PRODUCTION

Water-Energy Nexus Operational Toolkit : Renewable Energy

11/07/2017

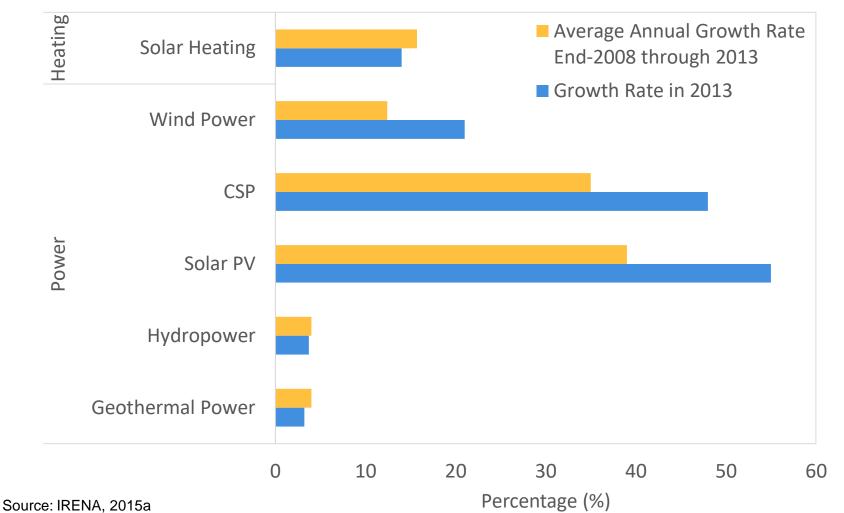
Economic and Social Commission for Western Asia

Prof. Hassan Arafat ESCWA Consultant

UNITED NATIONS

ESCWA

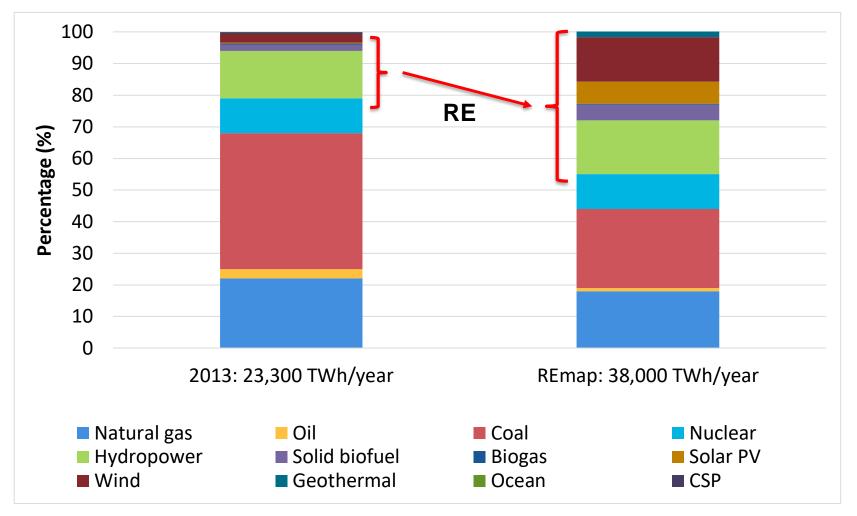
Outline


Introduction

Electricity production

Desalination

Key messages


Average annual global growth in RE capacity by sector

Introduction Share of fuel types in total electricity Source: The generation by world region (2013) World Bank, 2015. 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% Latin Europe & Sub-Saharan South Asia North Middle East East Asia & America & Central Asia Africa & North Pacific America Caribbean Africa

Coal Natural gas Oil Renewables (excl. hydroelectric) Nuclear Hydroelectric

Global power generation: 2013 vs. 2030

Source: IRENA, 2016a

Source:

IRENA,

2016b

Page 7

RE Projects in the Arab Countries: Planned/Under Construction

MW

30 30

MW

1021

kW

470

700

MW

10

100

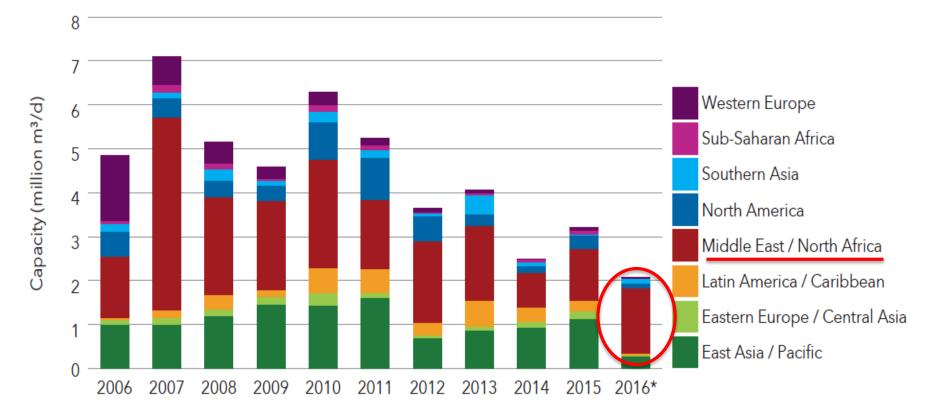
MW

15

100

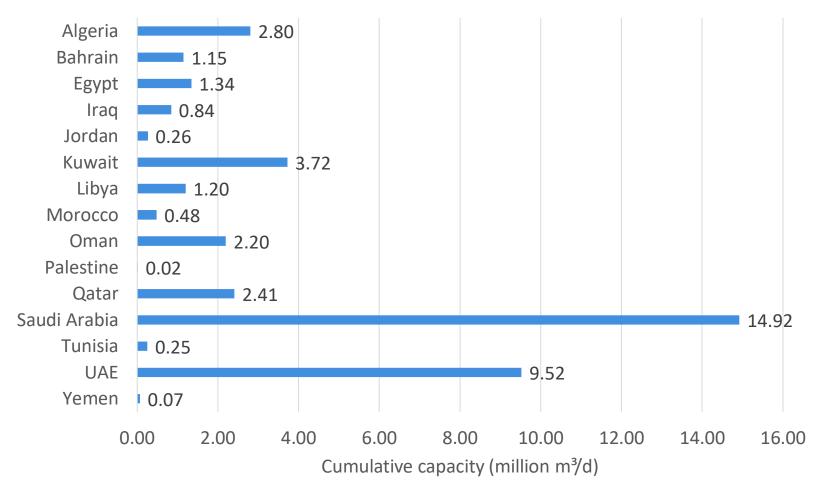
50

MW

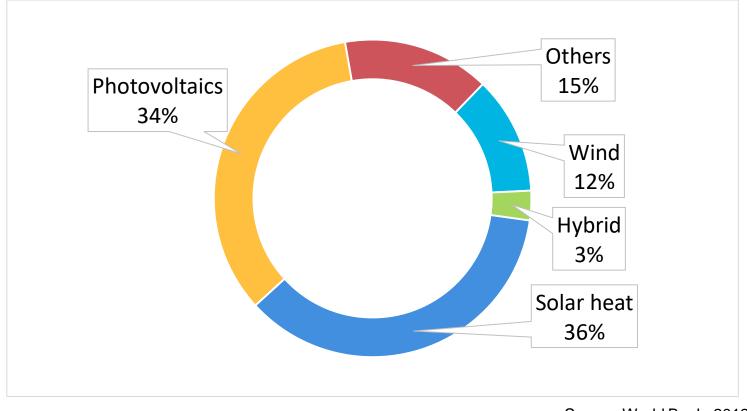

470

700

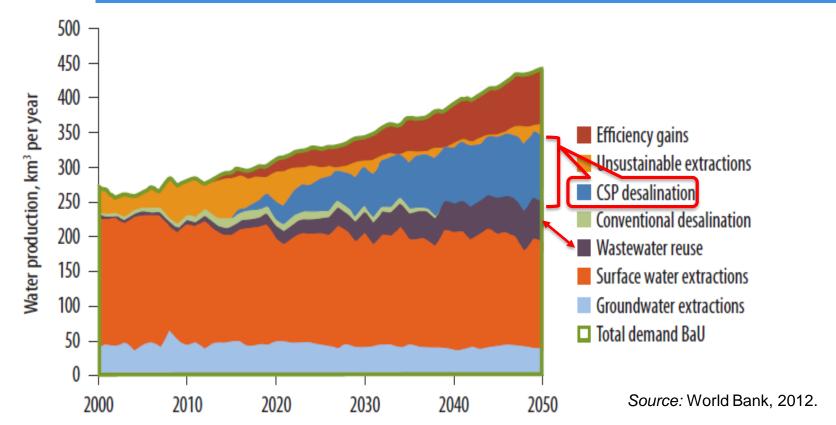
50


🚺 Algeria	MW	Lebanon	MW	💌 Mauritania
 Khenchela Distributed projects at different sites 	20 73	 Systems under the National Energy Effic 		NouakchottNouakchott
Guelma North and	5	and Renewable Ener Action (NEEREA) To be confirmed, und	30	🔚 Oman
Upper Platheus North and	343	bidding process	60-100	 Amal Oil Field Dhofar Wind Farm
Upper Platheus	5010	Libya	MW	
- Egypt	MW	 Darnah 	60	State of Palestine
Gabal El-Zavt	220	Al-Magron I	80	 Tubas
Gulf of El-Zayt	120	 Al-Magron I Al-Jofra 	120 14	Jericho
FiT wind projects	2000	 Houn 	14	
FiT PV projects	2300	😑 Sebha	40	Qatar
Jordan	MW	Morocco	MW	 Duhail Kahramaa project
Maan	75	• Taza	150	
Shamsuna Aqaba Al Quaira / Al Aqaba	10 150	 Tanger II 	100	😁 Saudi Arabia
Al Mafraq	10	Jbel Khalladi	120	
NEPCO/Masdar	200	 Boujdour Tiskrad 	100 300	 Al Khafji Mecca
		- Hakidu		Green Duba ISCC
Additional projects	400	Midelt	150	
Additional projects Additional projects	400 230 90	Jbel Lahdid	200	
 Additional projects Additional projects Al Fagig / Al Shobk 	230			
Additional projects Additional projects Al Fagig / Al Shobk	230	 Jbel Lahdid Noor II 	200 200	
 Additional projects Additional projects 	230 90	 Jbel Lahdid Noor II 	200 200	UAE

Annual contracted desalination capacity by region


Note: *values through June 2016; *Source:* Virgili et al., 2016.

Cumulative contracted desalination capacity in 2015 by country


Source: Alvarado-Revilla, 2015.

Global RE desalination by energy source in 2009

Source: World Bank, 2012.

Future water supply for the MENA region under the Business as Usual (BaU) Scenario

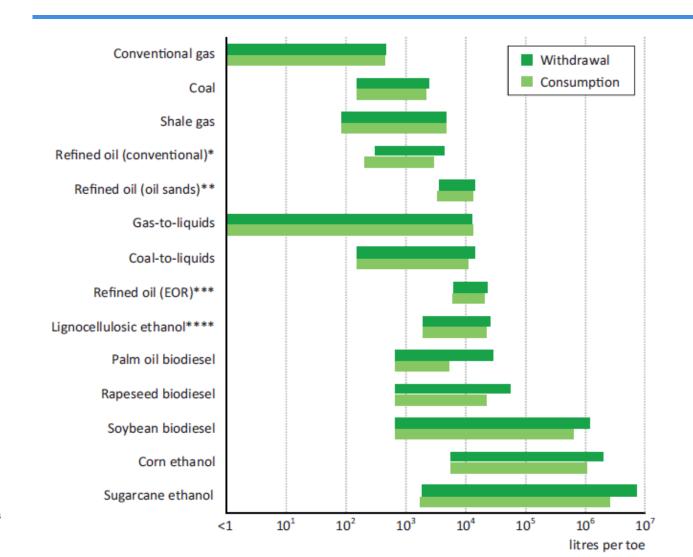
The CSP potential of the MENA region estimated to be 462,000 TWh annually; ~350 times greater than the region's annual energy consumption (as of 2012).

Electricity Production

© Copyright 2014 ESCWA. All rights reserved. No part of this presentation in all its property may be used or reproduced in any form without a written permission

Electricity production

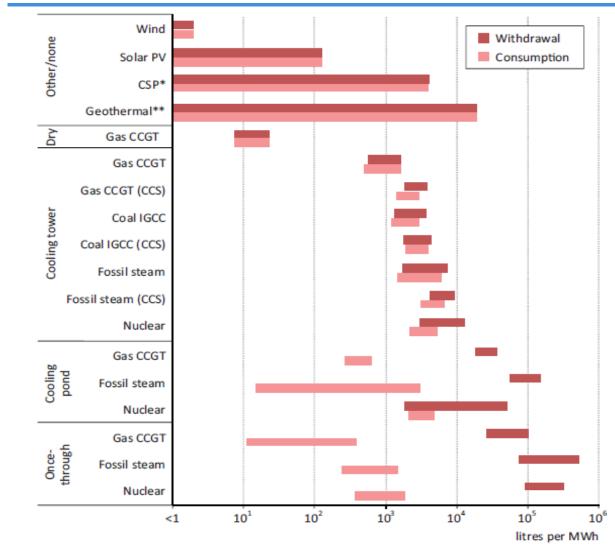
Key uses of water for energy and potential water quality impacts


	Uses	Potential water quality impacts					
Primary energy production							
Biofuels	 Irrigation for feedstock crop growth. Wet milling, washing and cooling in the 	 Contamination by runoff containing fertilisers, pesticides and sediments (surface and 					
	fuel conversion process.	groundwater).					
		Wastewater produced by refining.					
	Power gener	ration					
Thermal	• Boiler feed, i.e. the water used to	• Thermal pollution by cooling water discharge.					
(fossil	generate steam or hot water.	 Impact on aquatic ecosystems. 					
fuel, nuclear	Cooling for steam-condensing.	• Air emissions that pollute water downwind.					
and	Pollutant scrubbing using emissions-	• Discharge of boiler blowdown, i.e. boiler feed					
bioenergy)	control equipment.	that contains suspended solids.					
CSP and	• System fluids or boiler feed, i.e. the water	• Thermal pollution by cooling water discharge.					
geothermal	used to generate steam or hot water.Cooling for steam-condensing.	Impact on aquatic ecosystems.					
Hydropower	 Electricity generation. 	• Alteration of water temperatures, flow					
Inveropower	 Storage in a reservoir (for operating 	volume/timing and aquatic ecosystems.					
	hydro-electric dams or energy storage).	Evaporative losses from the reservoir.					

Page 13 © Copyright 2014 ESCWA. All rights reserved. No part of this presentation in all its property may be used or reproduced in any form without a written permission

Source: International Energy Agency, 2012.

Electricity production


Water use for primary energy production

Source: International Energy Agency, 2012.

Page 14

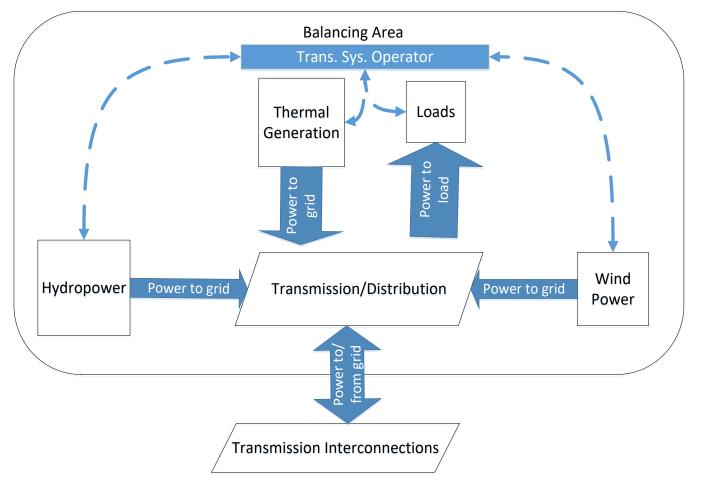
Electricity production Water use for electricity generation by cooling technology

Source: International Energy Agency, 2012.

Microhydropower systems

Hydropower systems which generate up to 100 kW of electricity and a minimum head of 3 ft and water flow ≈ 20 gallons/minute is required.

A portion of water is diverted from the water source and is directed into a structure such as a channel or a pressurized pipeline which delivers it to the (usually impulse) turbine or waterwheel.


Can be off-grid or grid-connected and used in areas such as large homes, small businesses and can be integrated into water supply networks and wastewater infrastructure.

Not intermittent unlike other RE sources and less costly than wind or solar energy, particularly in terms of capital costs.

Electricity production

Configuration for the integration of wind and hydropower resources

Source: Acker, 2011.

RE desalination in the Arab countries – Status quo

Existing renewable desalination systems have small capacities (up to 100 m3/d).

Only a small number of medium-sized installations are in use.

Mainly pilot size plants operational in Egypt, Jordan, Morocco, and the UAE.

Largest PV desalination plant in Khafji, Saudi Arabia with capacity of 60,000 m3/d and using nanomembranes to be commissioned in 2017.

processes

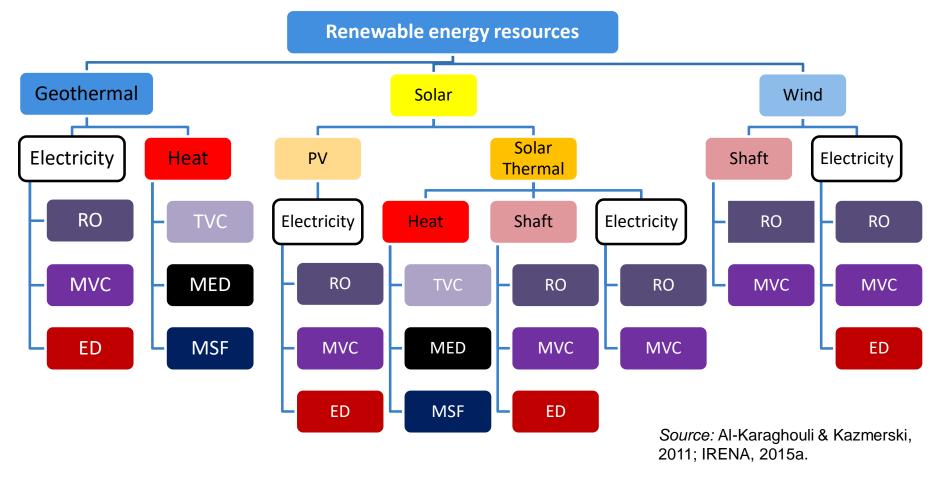
TDS <20ppm

Characteristics of different desalination

Source: Gude et al., 2010.

Type of process **Characteristic** Phase change Non-phase change Hybrid Thermally-driven process: Pressure/concentration Thermal + membrane: **Process nature** MED, MSF, MVC, TVC gradient driven: RO membrane distillation, (membrane separation), MSF/RO, MED/RO (evaporation and condensation) ED (electrochemical separation) Membrane pore size -0.1-3.5nm 0.2–0.6µm **Feed temperature** 60-120°C <45°C 40-80°C Cold water stream May be required 20-25°C **Driving force for** Concentration and Temperature and Temperature and separation concentration gradient pressure gradient concentration gradient Thermal and mechanical Mechanical and/or Thermal and mechanical Energy electrical Requires prime quality Form of energy Steam, low-grade heat or Low-grade heat sources or waste heat and some mechanical/ **RE** sources electrical energy derived mechanical energy for pumping derived from fossil from fossil fuels or fuels or renewable sources renewable sources **Product guality** High quality distillate with High quality distillate with Potable water quality TDS

<500ppm


TDS 20–500ppm

Seawater characteristics variation in the Arab region

Water source	Salinity (mg/L)	Temperature (°C)
Mediterranean and Atlantic	38,000–41,000	15–30
Red Sea and Indian Ocean	41,000–43,000	20–35
Gulf water	45,000–47,000	20–35

Source: World Bank, 2012.

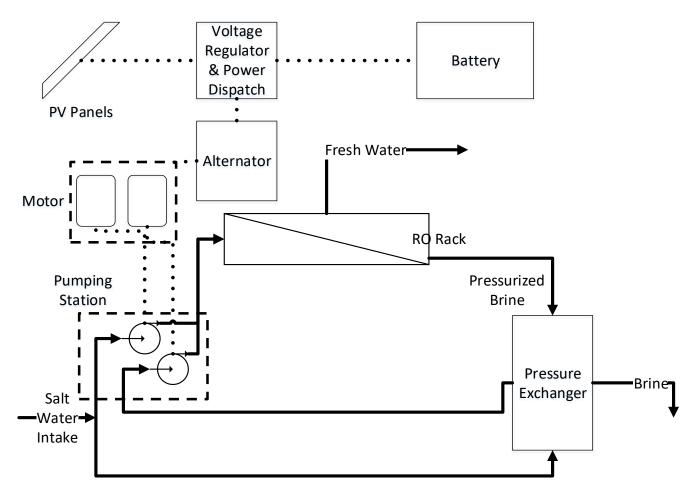
Pathways for RE integration with desalination technologies

Page 22 © Copyright 2014 ESCWA. All rights reserved. No part of this presentation in all its property may be used or reproduced in any form without a written permission

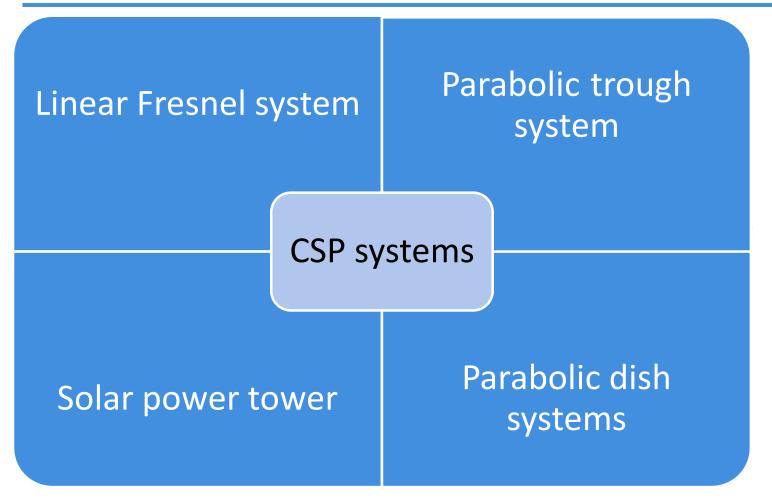
Pathways for RE integration with desalination technologies

	Technical Capacity (m ³ /d)	Energy Demand (kWh/m ³)	Development Stage
Solar stills	< 0.1	Solar passive	Application
Solar-Multiple Effect Humidification	1-100	thermal: 100 electrical: 1.5	R&D Application
Solar- MD	0.15-10	thermal: 150–200	R&D
Solar/CSP-MED	> 5,000	thermal: 60–70 electrical: 1.5–2	R&D
PV-RO	< 100	electrical: BW: 0.5–1.5; SW: 4-5	R&D Application
PV - Electrodialysis Reversed	< 100	electrical: only BW:3–4	R&D
Wind- RO	50-2,000	electrical: BW: 0.5–1.5; SW: 4–5	R&D Application
Wind- MVC	< 100	electrical: only SW:11–14	Basic Research

Solar desalination systems


Classified as solar thermal or PV systems.

Can be direct or indirect collection systems.


PV systems can be either flat-plate systems or concentrating systems.

Small-scale PV desalination systems being used worldwide, particularly in remote areas and on islands.

PV – RO system

CSP desalination systems

Page 26 © Copyright 2014 ESCWA. All rights reserved. No part of this presentation in all its property may be used or reproduced in any form without a written permission

Source: Bechtel Power Corp. et al., 2010.

Wind powered desalination

More suitable for powering small-medium scale desalination operations (e.g., wind-RO combinations can produce 50–2,000 m3/day).

Also suitable for coastal areas.

Wind energy usually associated with the powering of the RO, ED, or MVC desalination processes.

In MVC, the wind turbine's mechanical energy is directly used for vapor compression without requiring a further conversion into electricity, increasing process efficiency.

Key messages

- Share of RE in the electricity generation sector increasing worldwide.
 - This is also true for the Arab countries.
- RE technologies consume less water than conventional sources when being used to produce electricity.
 - Water withdrawal similar in value to water consumed for RE technologies.
- Solar energy is the most popular type of RE for powering desalination.
- There are many potential RE-desalination combinations but only a select few are viable.
 - Solar stills, solar-multiple effect humidification, PV- RO, wind-RO, and CSP/MED are the combinations which are currently being applied as RE powered desalination or have more potential to be applied.

THANK YOU

Economic and Social Commission for Western Asia

UNITED NATIONS

الاسلوا **ESCWA**