

New CO₂ Utilization in the Oil & Gas Sector

Dr. Syham Bentouati – NAFAS International LLC

Bahrain – 19 February 2017

Workshop on Deployment of Carbon Capture, Use and Storage in the Arab Region – Challenges and Opportunities

Algae Cultivation

よろ

Algae – Definition and Benefits

What are Algae

Algae are simple plants that can range from the microscopic (microalgae), to large seaweeds (macroalgae), such as giant kelp more than one hundred feet in length. Microalgae include both cyanobacteria, (similar to bacteria, and formerly called "blue-green algae") as well as green, brown and red algae.

Why Algae

What Do Algae Need to Grow

Nutrients

In an Oil & Gas Context

- Water can be from that produced with hydrocarbons
- Sunlight is abundant in the Arab World
- CO₂ Captured
- Nutrients can be present in the produced water or can be added

Bio-technology can be used to select/produce the right algae for a specific application (salinity, temperature, water contents, etc)

What Does Algae Cultivation Look Like

Photobioreactors for algae cultivation. Left: High Rate Algal Ponds, Earth Rise Farms, USA. Right: Tubular photobioreactor developed by IGV, Potsdam, Germany.

Algae Products and Value

Category	Price Range (\$/Kg)
Biofuels	<1
Proteins (for animal and fish feed)	0.3-1.5
Fine chemicals / food ingredients	10-50
Ingredients for pharma, cosmetics, high end nutraceuticals	150 and higher (> \$1000/Kg for astaxanthin)

NAFAS

Waterless Fracking

ろ

く

What is Hydraulic Fracturing

Graphic by Al Granberg

Water-Related Fracking Issues

- Deeper horizontal shale wells can use anywhere from 2 to 10 million gallons of water to fracture a single well
- In 2010, the U.S. Environmental Protection Agency estimated that 70 to 140 billion gallons of water are used to fracture 35,000 wells in the United States each year. This is approximately the annual water consumption of 40 to 80 cities each with a population of 50,000
- The extraction of so much water for fracking has raised concerns about the ecological impacts to aquatic resources, as well as dewatering of drinking water aquifers
- It has been estimated that the transportation of two to five million gallons of water (fresh or waste water) requires 1,400 truck trips. Thus, not only does water used for hydraulic fracturing deplete fresh water supplies and impact aquatic habitat, the transportation of so much water also creates localized air quality, safety and road repair issues
- Wastewater pits also represent a major environmental issue

How Can CO₂ Help

- The industry has sometimes used nitrogen and carbon dioxide (CO₂) in socalled "energized" or "foamed" frack fluids to reduce water usage
- Recent research has focused on the use of CO₂ to *completely eliminate water* used in fracking
- The CO₂ would be in a chilled form known as a "super-critical fluid" that is neither solid nor liquid
- Field trials have proved that it could produce more oil and natural gas by fracking with CO₂ instead of water, because CO₂ fracks occur at higher temperatures
- In conventional fracking, the frack water that stays in the formation can block the flow of hydrocarbon, therefore slowing down production and decreasing the amount it can produce over its lifetime. In contrast, using CO₂ allows the hydrocarbon to flow more freely and results in a better network of fractures
- CO₂ helps better oil sweep as it avoids "fingering"
- Trials with liquid CO₂ are showing very promising results

Fracking With CO₂ Research Opportunities

- Detailed assessment of CO₂ fracking compared to water, especially from environment impact aspect
- Determining the right viscosity for the CO₂, in order that it can do the job that water does now
- Transporting CO₂, a compressible gas, in large quantities for use in frack wells that are far from pipelines
- Capture and separation of "back-produced" CO₂

Big CO₂ Research Opportunity

Make CO₂ capture cheaper, especially for retrofit

