

Module 8

Beginning the cycle of strategic adaptive management

Adaptive management recognizes that we cannot accurately predict the future We must choose a course of action, monitor its effects and adjust as necessary This Module guides participants in that action There is more her than can be used; select what is appropriate for you

Module 8

Beginning the cycle of strategic adaptive management

Importance of Strategic Adaptive Management

- Resources are limited; we cannot do everything
- Inherent complexity demands synthetic view
- Uncertainty requires review and learning

Strategic Adaptive Management Cycle

Complex Adaptive Systems

- Ecosystems are made up of many elements
- Ecosystem is a network of interactions
- Changing the system can produce reactions and changes in elements and the environment
- Effects of an intervention in the system cannot be predicted with complete accuracy

Complex Adaptive Systems

- Hierarchy of self-organizing systems
- Inter-linkages between levels
- Adaptive cycles
- Different time and spatial scales

The Adaptive Cycle

[after Gunderson et al. (1995); Holling (2001)]

Holling's nested adaptive cycles: The Panarchy

Global environmental systems; Trade policies; International Institutions

Domestic policies, institutions Regional landscapes

Ecosystems and Community-scale Adaptive co-management

Time and Space Scales: Levels of a hierarchy in wetlands

[from Gunderson and Holling (2001)]

Time and Space Scales: Institutional Hierarchy of Rule Sets

Discussion (10 min.)

- Review the principles for intervening in complex adaptive systems
- Discuss in small groups which ones you have used in your management experience
- What might be barriers to a strategic, adaptive, ecosystem management approach?

Strategic Adaptive Management Cycle

Shared Visioning

Desired outcome at this stage is a shared vision of ultimate long-term goals

Intent is to deliberate until a shared space is identified where everyone

can agree on the ultimate goal for a desired ecosystem state

Scenario Backcasting (the Natural Step 2011)

General Visioning Steps

- 1. Identify key ecosystem issues of concern in your catchment
- 2. Clarify the state indicator of focus
- 3. Assess current state and trend of ecosystem indicator of focus
- 4. State desired future state of the ecosystem indicator

Exercise (10 min.)

Task #1: Identify a key ecosystem issue Task #2: Focus on an indicator that best represents that issue

Task #3: Assess current state and trend of the ecosystem indicator. What direction is the state likely to go in the future and why?

Task #4: Describe desired future state of the indicator. What timeframe is needed to reach the desired state?

Select a spokesperson to present in plenary

Visioning Worksheet

	lssue #1
General description	
Environmental state	
variable of focus	
Current state	
Desired future state	
(target level and year)	
Key ecosystem services	
and human well-being	
aspects supported	

Portfolio Planning

- This stage focuses on describing potential pathways to the desired future
- Here we emphasize importance of exploring and implementing a variety of ecosystem initiatives
- At this stage, not all stakeholders may agree on the path to the desired future

Outcome-based Management Framework

Role of the ecosystem manager

Work with stakeholders to identify options leading toward potential intermediate-level outcomes (changes in practice and behavior) that could deliver desired changes in ecosystem state

Thinking Like an Ecosystem

DPSIR Recap

Case study

Conceptual Phase

- Main issues: urban sprawl (population growth) and industrial development
 - Soil erosion by uncontrolled land development
 - >Shortage of water supply system for the growing population
 - Shortage of municipal waste water treatment plants for the growing population → contaminate ground water
 - ≻Untreated industrial waste water → deterioration of water quality
 ≻Development of water resources area of upper stream → deterioration of water quality

Parameters related to water issues

DPSI	Parameter	
(D) Driving Force	(1) Population Density (2) Migration (3) GDP per capita(4) Climate Change	
(P) Pressure	 (5) Municipal water demand (6) Industrial water demand (7) Waste water discharge (8) Land use Change (9) Infrastructure (10) Soil erosion 	
(S) State	(11) Ecosystem (12) Water quality status (BOD/ SS/ Heavy metals/ NO ₃) (13) Available Water Quantity (surface/ under ground)	
(I) Impact	(14) Disease by water (15) Environmental accident (16) Water shortage (17) Natural Disaster (High flood/drought)	

Rules to Select an Indicators

Related to the objective Simple and Easy to collect Quantifiable and Accurate Practically Integrated Sensitive to other indicators

Selection of Responses (alternatives)

Institutional alternative

- ✓ Charge user fee to all water users
- ✓ Pollution charge system
- ✓Water source protection
- ✓ Facility permit system
- ✓ Land use planning for pollutant control
- ✓ Enforce environment impact
- ✓ Monitoring system
- ✓ Solid waste management system

Infrastructural alternative ✓ Reusing water ✓ Build local WWTPs ✓ Improvement water supply system ✓ Development water source

Governance alternative ✓ Participation and capacity building

 Evaluation of proposed alternatives in terms of technical, economical and administrative feasibility by local experts

Apply DPSIR to your conceptual catchment (30 min)

DPSI	Parameter
(D) Driving Force	
(P) Pressure	
(S) State	
(I) Impact	

Rules to Select an Indicators

- Related to the objective
- Simple and Easy to collect
- Quantifiable and Accurate
- Practically Integrated
- Sensitive to other indicators

DPSIR Indicators to Evaluate Water Resources

(Driving force (economy and social indicators)	Pressure (human activity)	State (current status and environmental change)	Impact (ultimate impact of environmental change)	Response (alternatives or regulation)
Socia	 Population density 	•Urbanization rate	•Household water use per day	•Days under water quality	•Regulated area by the law
1	•Population growth rate	•Change of forest area by	•Water resource supply rate	goal	•Expenditure for government land
	•Education level	industrialization	•Achievement rate of	•Number of environmental	preservation
	•Average age of citizens	 Increase of mining area 	environmental flow in river	accident	•Sewage treatment rate
	•Number of house	•Number of production	 Irrigation rate 	•Death rate of below age of	•National river (big river) ratio
		factory	•Water resource use per	5 years	•Violation record of pollutant
		•Emission load of waste	people	•Population and damage	emission
Econ	•GDP per people	water	•Water resource per	area due to the limited	•Number of public servant in water
omic	•Unemployment rate	•Fertilizer use	agricultural land	water supply	resource field
al	•Asset value	•Impervious area rate	•BOD goal achievement rate	•Drought damaged property	•Law on numerical water supply
	•Number of car per people	•Available seawater resource	•River water quality	density	•Development of alternate energy
	•Investment of	•Maximum daily rainfall	•Groundwater quality	•Decrease of river water	•Regulation of fossil fuel use
	environment part	•Totally available water	•Floods frequency	resource	•Improvement of environment
	•Development rate	resource	•Drought rate	•Disease problem caused	policy
		•Altitude and watershed	•Change rate of temperature	by water quality	•Distribution of irrigation facility
		slope	•Change rate of water quality		•Development of groundwater
Envir	•Water bodies	•SOx, NOx emission rate	•Change rate of ecosystem		•Expansion of law related to water
onme	•Forest	•Water demand for			resource
ntal	•Agriculture production	agriculture			
	rate	•Industrial rate			
	•Number of dams				
	 Protection area 				

Identifying Co-benefits

- DPSIR is a useful tool for finding co-benefits among issues
- Addressing a pressure or driver may benefit several environmental states
- Improving one environmental state may benefit several aspects of well-being
- Co-benefits analysis helps managers understand potential joint gains among seemingly disparate stakeholder groups

Co-benefits Matrix			
States, Pressures, Drivers and Impacts	Environmental State Issues of Concern in the Ecosystem		Commonalities and
	lssue #1	Issue #2	Stakeholders
State of the Environment List the state of the environment			
Pressures List direct pressures on the state			
Drivers List the high-level drivers of change influencing direct pressures, along with any specific targets			
Impacts State primary impacts associated with changes in the environmental state. Use ecosystem services and human well-being categories to assist you			

Example: MEA Synergies Worksheet				
States and	MEA Goals and Targe Environmental State,	Key Synergies		
Pressures (Note: Drivers and Impacts on next slide)	MEA #1 (Climate Change)	MEA #2 (Combating Desertification)		
State of the Environment State that the MEA is addressing, along with specific targets	Atmosphere Climate Change 	Soil • Desertification	 Climate change intensifies drought and desertification 	
Pressures Direct pressures on state	 Rising CO₂ from energy use CO₂ emissions from land-use changes 	 Land-use intensification Water shortages 	 Application of fertilizers Land use changes increase atmospheric CO₂ 	