
Understand: Water Challenges in the UAE

2040 Projection

"Water is more important than oil"

World Resources Institute Aqueduct Risk Atlas, 2015

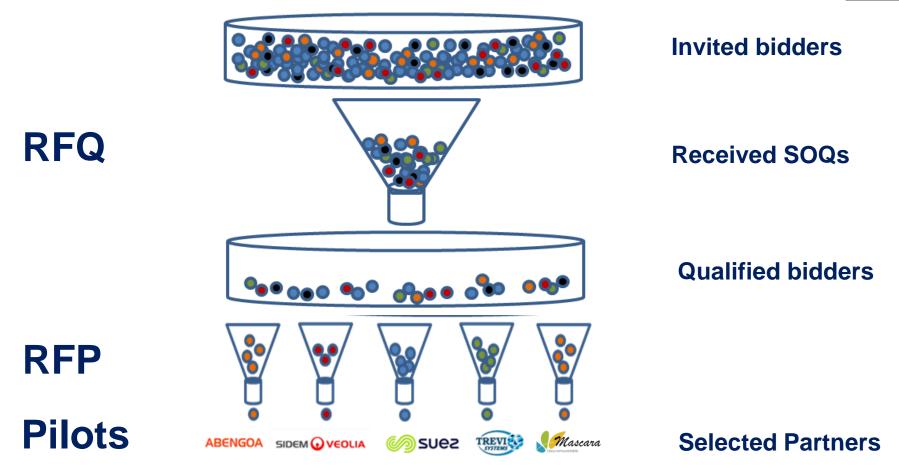
H.H. Mohammed bin Zayed Al-Nahyan Crown Prince of Abu Dhabi and Deputy Supreme Commander of the UAE Armed Forces

Objectives

Masdar RE Water desalination program objective is to develop and demonstrate advanced and innovative seawater desalination technologies that:

are more energy efficient than current state-of-the-art systems;

are suitable to be powered by renewable energy sources;


are <u>cost competitive</u> with non-renewable energy powered seawater desalination;

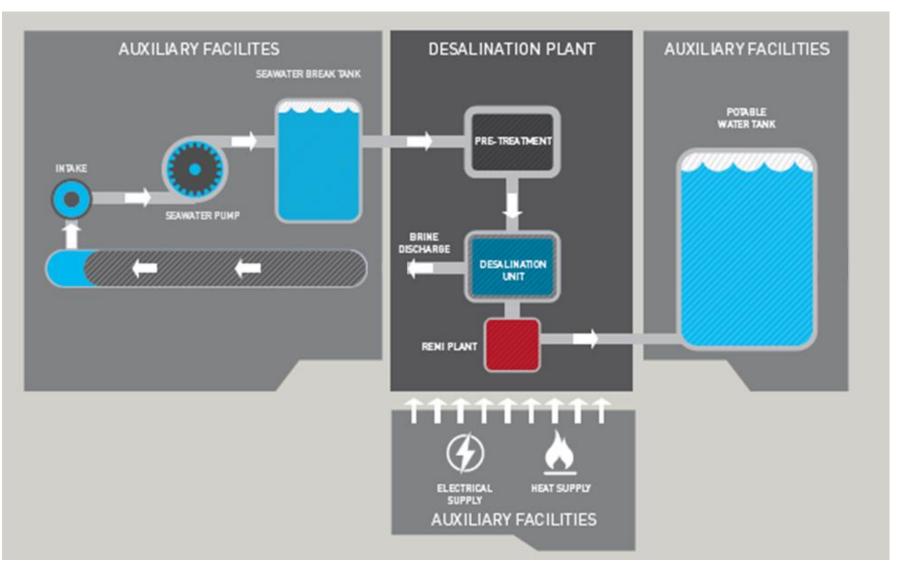
have minimal environmental impact; and

are <u>resilient</u> in challenging seawater and environmental conditions

The selection process

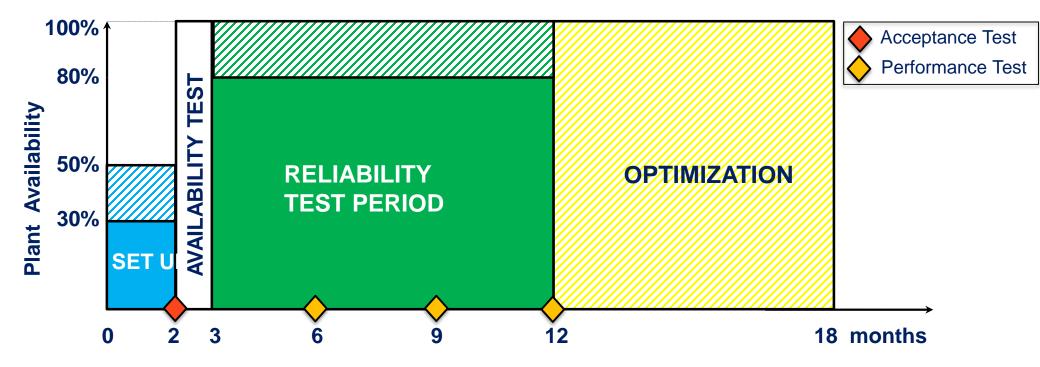
Project Implementation


- The demonstration includes 5 pilot plants located in Ghantoot, Abu Dhabi. Each pilot plant will be operated over 18 months;
- Masdar implements the program in close collaboration with the Abu Dhabi governmental agencies in the water sector;
- The 5 pilot plants will demonstrate different advanced and innovative desalination technologies.


Project Site

• The Project is located in Ghantoot, in the Emirate of Abu Dhabi, which is a coastal place around 65 km northeast of the city of Abu Dhabi and around 60 km southwest of Dubai.

CONSULTING


Pilot Plant Setup

CONSULTING ENGINEERS

Test Regime

					ᄪᄰ
Pilot plant operation time	Months 1 – 2	Month 3	Months 3 - 12	Months 12 – 18	CONSULTING ENGINEERS
Operational mode	Initial setup	Availability test	Reliability test period	Optimization	
Plant availability	30 – 50 %	100%	Min 80%	Up to 100%	

Site Photos

ABENGOA

Abengoa desalination pilot plant

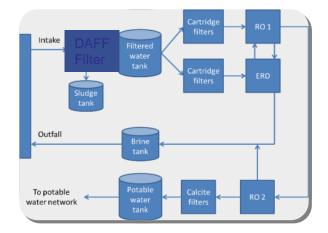
🧑 suez

Suez desalination pilot plant

Trevi Systems desalination pilot plant

Veolia desalination pilot plant

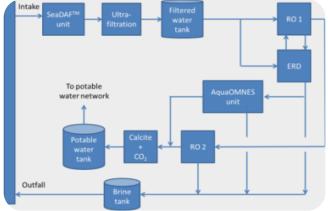
Mascara desalination pilot plant


Description of Technology

- 2-pass RO desalination system with a special center-port configuration;
- Combination of dissolved air flotation + gravity dual media filter in a single unit reduces pressure loss and required civil works;
- OSMOREC's energy recovery device: uses energy from the brine to pressurize the feed, lowering the required energy for feed pressurization

Key results

• Plant has successfully completed the acceptance test, availability test, and the reliability tests and is currently in the last phase of the pilot program, the optimization phase.



Description of Technology

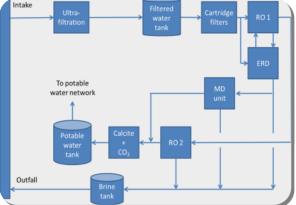
- 2-pass RO system using dissolved air floatation and ultrafiltration as pretreatment.
- The RO system is integrated with an innovative brine management unit (AquaOmnes[™]) based on a liquid-liquid ion exchange. This enables an increased recovery ratio.

Key results

• Plant has successfully completed the acceptance test, availability test, and the reliability tests and is currently in the last phase of the pilot program, the optimization phase.

Abengoa

ABENGOA

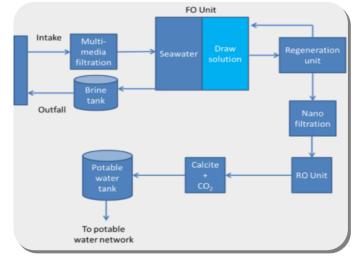

Description of Technology

- Integrated RO and MD plant, where the brine from the 1st pass RO plant is treated using the downstream MD system
- Innovative combination, which has the potential to increase the total recovery ratio and to reduce the energy consumption compared to the state-of-the-art
- The increased recovery ratio lowers the environmental impact of the desalination plant

Key results

• Plant has successfully completed the acceptance and availability test. The plant is currently being tested for reliability.

Trevi Systems



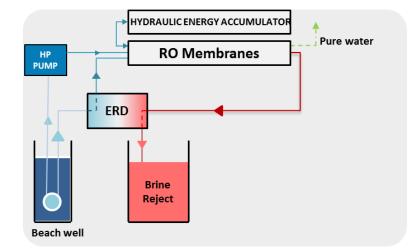
Description of Technology

- This pilot plant is demonstrating forward osmosis desalination technology
- It applies the natural process of osmosis to extract water from seawater due to a difference in osmotic pressure
- The process uses a thermally regenerated draw solution (patented by Trevi Systems) to carry out the separation.

Key results

• Plant has successfully completed the commissioning and first testing phase.

Mascara NT



Description of Technology

- This pilot plant demonstrates fully solar powered off-grid reverse osmosis technology without use of batteries
- The desalination unit is operated only during sunlight hours
- Proprietary technology allows operation under varying power supply
- Seawater supply via beach well

Key results

• Plant has successfully completed the acceptance test. The plant is currently being tested for reliability.

Accompanying Research at Masdar Institute

MI supports all 5 partners with accompanying R&D

ABENGOA		SUEZ	TREVI	Mascara			
Scope	Scope	Scope	Scope	Scope			
Evaluate scaling and fouling processes in membrane distillation modules.	Develop capacitive de-ionization of RO product water to avoid double-pass RO systems.	Develop optimized design of solar energy powered RO plant using most practical and economical.	Develop and test high temperature FO membranes and manufacturing techniques.	Evaluate feasibility of PV system active cooling in terms of productivity for solar powered desalination.			
Results	Anticipated results	Anticipated results	Results	Anticipated results			
- Strategies to reduce scaling and fouling - Evaluation and troubleshooting report for commercial plants.	 Demonstration of 100l/h unit in lab envir Identified improvements on electrode materials Evaluation of bio- fouling propensity; Basic design for 20,000 m³/d RO+CapDI plant. 	 Optimized processes and configurations for solar RO plants Cost of water by solar RO plants. 	 Developed a recipe for composition and structure of advanced FO membranes Experimental verification of prototype membranes Developed novel manufacturing techniques. 	 Quantification of active cooling impact on photovoltaic system used for desalination. Experimental prototype of the active cooling system. 			
Completion	Expected completion	Expected Completion	Completion	Expected completion			
Q1 / 2016	Q2 / 2017	Q1 / 2017	Q1 / 2016	Q1 / 2018			

- Energy and cost savings: Estimated annual cost savings of 94 million USD is expected from 2020 onwards, if 15% of Abu Dhabi's newly built desalination capacity is met by the implementation of the demonstrated energy efficient technologies.
- Reduced dependence on natural gas: The program will enable Abu Dhabi to cost-effectively power desalination plants with renewable energy sources, providing Abu Dhabi with the valuable option to reduce dependence on natural gas for the production of water.

ILF-Organisation\Präsentationen\ILF-Group_en_rev8.ppt

Key Takeaways

- All pilot plants met Masdar's performance expectations in terms of energy consumption, reliability and water quality.
- Arabian Gulf seawater has proven to be challenging especially due to the high organic and biological content.
- Reverse Osmosis has proven to be a reliable desalination technology to produce drinking water even with challenging seawaters.
- Dissolved Air Floatation process has proven to be crucial to enhance the performance of the pre-treatment and consequently of the desalination unit.
- The advanced design solutions for RO piloted in Ghantoot can be easily scaled up to utility size.
- The program has demonstrated that producing drinking water with RO plants powered with renewable energy sources is cost-effective, providing Abu Dhabi with the valuable option to reduce the dependence on natural gas for the production of water.
- The calculated cost of drinking water produced by a grid-connected PV-RO plant with the technologies demonstrated in Ghantoot is 0.87 – 0.92 USD/m³.

The ILF Group Thank you for your attention!

ENGINEERING EXCELLENCE