

1st MENA Energy Economics Conference

Impacts of energy efficiency policies on the integration of renewable energies - Case Study of the Tunisian Electricity System -

Essia Znouda Ecole Nationale d'Ingénieurs de Tunis (ENIT)

Beirut – 6th & ^{7th} December 2018

Energetic Situation in Tunisia

Evolution of Energy Balance

Energy Subsidies

Governmental direct subsidies for energy sector

The global subsidies in 2013: ≈ 5300 MTND,

- 43% are allocated for oil products,
- 41% for electricity,
- •16% for natural gas,
- 0.9% for energy conservation.

Energetic Situation in Tunisia

Evolution of Electricity demand

Evolution of the net national electricity demand 1985 - 2016

Rate of annual growth of electricity demand during the last three decades: ≈5%. National electricity demand In 2016: 15079 GWh

Energetic Situation in Tunisia

Electricity Mix

Evolution of the Electricity Mix

Energetic Situation in Tunisia Electricity Mix

Primary energy utilisation for electricity production in 2014

Dependency on fossil fuels (Natural Gaz)

Energetic Situation in Tunisia Main characteristics

- •Big deficit in the primary energy balance
- •Large amount of subsidies (≈ 5300 MTND in 2013)
- •High level of electricity demand (15079 GWh in 2016) and high rate of growth (5%)
- •Electricity Mix based on fossil fuels (93% NG)

Need for energy transition

- More Energy Efficiency
- More Renewable energies

How? How much? Which kind of RE?

Tunisian Electricity System Modeling

Modelling Tool: Open Source Energy Modelling Systems "OSeMOSYS"

- A bottom-up, dynamic and linear optimisation model
- Aims to calculate the lowest net present cost of an energy system to meet given demands.
- The demands for energy are met by technologies competing against each other and defined by a set of economic, technical and environmental parameters and policy goals
- It is used for long-term energy planning by developed and developing economies' researchers and governments
- The mathematical language used for simulating the model is Gnu Math-Prog using the solver GLPK.

Tunisian Electricity System Modeling

, , , , , , , , , , , , , , , , , , ,		rate of activity <= capacity potential	production >= demand + use + trade	RE production <=RE demand* target	technology emissions + exogenous emissions <= annual emissions limit	Demand RM * RM <= Capacity in RM	rates of production by echnology ∨s. online capacity reserves ∨s. rates of production by technology
	total discounted cost = sum discounted costs + emissions penalty - salvage value	total capacity = residual capacity + accumulated new capacity	 rate of activity * input activity ratio = use rate of activity * output activity ratio = production 	 RE production = tag*technology production RE demand= tag*rate of demand 	 emission activity ratio* technology activity = technology emissions 	demand needing RM = production rate * RM fuel total capacity * RM technologies capacities in RM	 load partialisation = online capacity - rate of production by technology

Objective function:

Estimate the lowest net present value (NPV) cost of an energy system to meet given demand(s) for energy or energy services taking into consideration the Y, r, t, f, e

PLAIN ENGLISH DE SCRIPTION

MATHEMATICAL FORMULATION

GNU IMPLEMENTATION

$$Min \ total \ NPV \ cost = Min \ \sum_{r,y} Total \ discounted \ cost_{r,y}$$

Decision Variables:

Rate of activity (r,l,t,m,y) New capacity (r,t,y) Online capacity (r,t,y)

Tunisian Electricity System Modeling Reference Energy System

Tunisian Electricity System Modeling

Main assumptions

Time domain	2010 to 2030
Time slices	16, weekdays and weekends, day and night for three
	seasons and Ramadhan
Existing technologies	NG fired Steam PPs, CCGTs, OCGTs (large and small
	capacities), wind turbines, hydro power plants,
	decentralised PV and onshore interconnections
Future technologies	CCGTs, OCGTs (large capacities), wind turbines,
	decentralised PV, Centralised PV, CSP, PSH, and onshore
	& offshore interconnections
Considered Scenarii	BAU scenario:
	 5% of electricity generation by 2030
	RE scenario:
	 30% of renewables by 2030

Discounted Costs

Main Resulsts

Electricity Mix

BAU Scenario

RE Scenario

Capacities Shares

BAU Scenario

RE Scenario

Evolution of daily profiles

Amongst energy efficiency actions:

➢Peak clipping: reducing the demand during peak periods through scheduled outages ☺

➤Load shedding: cutting electricity supply by zone during a period to manage the demand and avoid blackouts, due to the incremental peak or variability of RES ☺

→ Load shedding could be associated to peak clipping, if it is targeted, well planned, and programmed in advance

• Peak clipping : decreasing the peak + avoiding the system operator from using costly technologies, low efficiency and polluting technologies

- System reliability: the rate of the satisfaction of demand of all customers
- System reliability could be associated to the Loss-of-Load Probability (LOLP)

 $\forall_{r,l,f,y}$ SystemReliability_{r,f,y} = Pr (S \geq D) or SystemReliability_{r,f,y} = 1 - LOLP_{r,f,y}

$$\forall_{r,l,f,y} production_{r,l,f,y} \ge domand_{r,l,f,y} + use_{r,l,f,y}$$

 $\forall_{r,l,f,y} production_{r,l,f,y} \ge demand_{r,l,f,y} \times (SystemReliability_{r,f,y}) + use_{r,l,f,y}$

Impact of Energy Efficiency

BAU scenario

Conclusions

• The decrease of the reliability of the power system by 1% has allowed decreasing the costs of RE scenario by 0.12 billion 2010 USD and the costs of the BAU by 0.14 billion 2010 USD;

• The total cost of RE scenario at a reliability of 97% is equal to the cost of the BAU scenario at 99%, i.e. 13.58 billion 2010 USD. Achieving 30% of RE in the electricity mix with 97% of power system reliability is as costly as a BAU scenario with 99% reliability.

• The 2% decrease in system reliability while integrating RE could be assessed through EE actions such as peak clipping.

Decreasing system reliability could be seen as an energy efficiency action boosting the implementation of RES in the power system.
 Such actions could be integrated alongside RE Government's objectives through outages tariffs or smart meters, etc.

Thank you for your attention

ECONOMICS 7.899 3.876

essia.znouda@enit.utm.tn

1221 122

