SEEA CF, EW MFA and the SDG indicators for domestic material consumption and material footprint

Ole Gravgård Pedersen Chief Adviser ogp@dst.dk

EGM on "Resource Efficiency in the Arab Region: Monitoring Progress of SDG 12 and Building Back Better from COVID-19"

SDG - goals, targets and indicators

PROMOTE SUSTAINED, INCLUSIVE AND SUSTAINABLE ECONOMIC GROWTH, Full and productive employment and decent work for all

Target 8.4 Improve progressively, trough 2030, global <u>resource</u> <u>efficiency in consumption and production</u> ...

ENSURE SUSTAINABLE CONSUMPTION AND PRODUCTION PATTERNS

Target 12.2 By 2030, achieve the sustainable management and **efficient use of natural resources**

Monitored by the same two indicators for material use:

Indicator 8.4.1/12.2.1: Material footprint, per capita, per GDP

Indicators 8.4.2/12.2.2: Domestic material consumption, DMC, per capita, per GDP

Indicator 8.4.2 + 12.2.2 **Domestic Material Consumption, DMC**

DMC

- = Domestic extraction of natural resources
- + imports of goods
- exports of goods

Measures the direct consumption of materials by the domestic economy – tonnes per year

All types of natural resources/goods are taken into account and added up, except water

Tier I indicator

Indicator 8.4.1 + 12.2.1 Material footprint

Material footprint

- = Domestic extraction of natural resources
- + RME (imports of goods)
- RME (exports of goods)

RME - Raw material equivalents

Measures the global natural resource extraction (Raw Material Equivalents) generated by the domestic final demand of a country. Includes all resources around the globe needed for the production of imports and exports. Tonnes per years.

Builds on the DMC, but **requires modeling** (multi regional input-output), assumptions, international databases for resource extraction in all countries

Tier II indicator

The <u>Economy wide – material flows accounts</u> <u>framework, EW-MFA is the basis for</u> the DMC and the material footprint (RME) indicators

- EW-MFA: accounting rules, identities, classifications and a number of indicators (including DMC) tonnes per year
- Breakdown by various types of materials (biomass, metal ores, non-metalic minerals, fossil energy)
- Accounts for material inputs to the economy and material outputs from the economy. Also accumulation of materials within the economy is taken into account.
- Inter-industry, etc. flows within the economy are <u>not</u> recorded
- Water and air are excluded (except for some balancing items).

Scope of Economy Wide Material Flow Accounts

DE + Imports + Input Balancing Items = Exports + DPO + Output Balancing Items + NAS

Source: Economy wide material flow accounts - Handbook, 2018 edition, Eurostat

Different stages of EW-MFA

Direct physical flows: Domestic extraction, imports and exports

=> Domestic material consumption, DMC

- Raw material equivalents of trade => Material footprints - requires modelling
- Material outflows (waste, air emissions, etc.)
 => Domestic processed output
- Accumulation in the economy additions to stocks

System of Environmental-Economic Accounting – Central Framework

Chapter 3 Physical flow accounting

Physical supply-use tables (inspired by the national accounts)

Describe *physical* flows

- From the environment to the economy
- From the economy to the environment
- Within the economy

Measuring units:Tonnes, Joules, cubic metres (depends on purpose)

Scope of SEEA CF physical flow accounting

Economy – Environment

Physical <u>supply</u> table - example

Outputs from

			Industries			Imp	orts	Consump -tion, etc.		Environ– ment	
	Supply table		Industrial branches			\$					
			Agric.	Mining	Indus.	Serv.	Import	Cons. A	ccum.	Envir.	Total
Products	Products	Agricultural pr	39	0	0	0	24				63
		Mining pr	0	113	4	- 4	156				277
		Industrypr.	0	0	218	6	144				368
		Services	0	0	0	0	0				0
Residuals	Residuals	Sol. waste	4	0	48	7	1	8	1		69
		Airemiss	10	3	141	57	0	37			248
	_										
Natural inputs	Resources									148	148
	Balance item	I	14		6			9			29
	Tota	l	67	116	417	74	325	54	1	148	

Source: Delahaye, R. et al. Statistics Netherlands: Material Flow Monitor

Physical <u>use</u> table - example

Inputs to

Evporte

Environ

Consumn

			industries			-tion, etc.		Exports		ment	n –
	Use table	Industrial branches				Final demand					
			Agric.	Mining	Indus.	Serv.	Cons.	Export	hves.	Accum.	Total
Products	Products	Agricultural pr	2	0	35	1	6	19	0		63
		Mining pr	2	8	185	11	1	70	0		277
		ndustrypr.	12	0	117	28	47	160	4		368
		Services	0	0	0	0	0	0	0		0
Residuals	Residuals	Sol. waste	1	0	43	12	0	13	0		69
Natural	Resources		40	108	0	0					148
inputs	Balance item		10	0	37	22				208	277
	Tota		67	116	417	74	54	262	4	208	

Inductriac

Source: Delahaye, R. et al. Statistics Netherlands: Material Flow Monitor

Supply is equal to use

Various balances in the supply and use tables

Balances for matter:

- Supply of products = use of products
- Supply of natural inputs = use of natural inputs
- Supply of residuals = use of residuals
- Total supply = total use

Balances for industries and households: Total inputs = total outputs

Advantages of SEEA CF physical accounts (supply-use tables)

- Accounting and classification rules provide link to the national accounts and to the input-output tables (useful for analysis, modelling and estimations of footprints)
- Provides an overall framework that is broader than the EW-MFA (include the flows within the economy – production, consumption, accumulation)
- The same conceptual framework can be used for materials, water, energy air emissions and waste, etc.

Implementation of SEEA CF physical *supply and use tables*

- Quite costly and demanding to construct complete physical supply and use tables including all natural inputs, products and residuals
- Instead tables for specific parts or partial tables may be constructed, e.g. physical supply and use tables for energy, water, waste, or air emissions
- EW-MFA and estimation of DMC (SDG indicator 12.2.2) can be seen as a first pragmatic step

