Review of global and regional vulnerability assessments of water resources due to climate change

Mahmoud Medany

The Arab Organization for Agricultural Development AOAD

Presentation outlines:

- 1. Vulnerability concept
- 2. Current global and regional water situation
- 3. Global and regional water situation & CC
- 4. Vulnerability example
- 5. Conclusion

Presentation outlines:

- 1. Vulnerability concept
- 2. Current global and regional water situation
- 3. Global and regional water situation & CC
- 4. Vulnerability example
- 5. Conclusion

Schematic framework representing anthropogenic drivers, impacts of and responses to climate change, and their linkages.

Vulnerability Definition

Vulnerability of the systems to climate change...

The degree to which geophysical, biological and socio-economic systems are susceptible to, and unable to cope with, the adverse impacts of climate change.

Füssel and Klein (2006)

Assessments of Climate Change Impacts, Adaptation and Vulnerability (CCIAV)... are undertaken to inform decision-making in an environment of uncertainty.

A major aim of CCIAV assessment approaches is **to manage, rather than overcome, uncertainty** (Schneider and Kuntz-Duriseti, 2002), and each approach has its strengths and weaknesses in that regard.

CCIAV concept: the overall scope and direction of an assessment and **can accommodate a variety of different methods**.

CCIV method: a systematic process of analysis.

Assessment studies TORs

CCIAV five approaches:

impact assessment,
 adaptation assessment,
 vulnerability assessment,
 Integrated assessment.

5)risk management, has emerged as CCIAV studies have begun to be taken up in mainstream policy-making.

Most CCIAV approaches have a scenario component

	CCIAV Approach			
	Impact	Vulnerability	Adaptation	Integrated
Scientific objectives	Impacts and risks under future climate	Processes affecting vulnerability to climate change	Processes affecting adaptation and adaptive capacity	Interactions and feedbacks between multiple drivers and impacts
Practical aims	Actions to reduce risks	Actions to reduce vulnerability	Actions to improve adaptation	Global policy options and costs
Research methods	Standard approach to CCIAV Drivers- pressure- state impact- response (DPSIR) methods Hazard-driven risk Assessment	Vulnerability indicators and profiles Past and present climate risks Livelihood analysis Agent-based methods Narrative methods Risk perception including critical thresholds Development/sustainability policy performance Relationship of adaptive capacity to sustainable development		Integrated assessment modeling Cross-sectoral interactions Integration of climate with other drivers Stakeholder discussions Linking models across types and scales Combining assessment approaches/methods
Spatial domains	Top-down Global -> Local	Bottom-up Local -> Regional (macro-economic approaches are top- down)		Linking scales Commonly global/regional Often grid-based
Scenario types	Exploratory scenarios of climate and other factors (e.g., SRES) Normative scenarios (e.g., stabilisation)	Socio-economic conditions Scenarios or inverse methods	Baseline adaptation Adaptation analogues from history, other locations, other activities	Exploratory scenarios: exogenous and often endogenous (including feedbacks) Normative pathways
Motivation	Research-driven	Research- /stakeholder-driven	Stakeholder-/research driven	Research-/stakeholder- driven

"[Vulnerability] is an aggregate measure of human welfare that integrates environmental, social, economic and political exposure to a range of harmful perturbations" (UNEP 2001).

"[Vulnerability] is an aggregate measure of human welfare that integrates environmental, social, economic and political exposure to a range of harmful perturbations" (UNEP 2001).

Uncertainty derived from

Uncertainty derived from

Integrating agricultural and socioeconomic impacts (cost of action, cost of inaction) Selecting priority actions

Issues of scale, thresholds and surprises Modelling adaptation

Socio-economic methods (models, participation,) Agricultural methods (models, effects of CO2, ...)

Climate, climate variability and water supply scenarios Socioeconomic scenarios (population, GCP, ...) Vulnerability of water resources and management to climate change....

Water stress/ scarcity

Indicators

- ✓ Available global resources
 ✓ Distribution of natural water resources
- ✓Water usage profile
- ✓ Change in resources under climate change

Exposures

- ✓Population increase
- ✓Food security demands
- ✓ Climate change impact on food security
- ✓ Social development & wealth equity access
- ✓Unsustainable development
- ✓Change in water usage profile

Presentation outlines:

- **1. Vulnerability concept**
- 2. Current global and regional water situation
- 3. Global and regional water situation & CC
- 4. Vulnerability example
- 5. Conclusion

Source: World Resources 2000-2001, People and Ecosystems: The Fraying Web of Life, World Resources Institute (WRI), Washington DC, 2000.

Aridity Zones of the World

WRI. 2002. World Resources Institute. Drylands, People, and Ecosystem Goods and Services: A Web-based Geospatial Analysis. Available online at: http://www.wri.org.

Water consumption profile

On a world scale, about 70% of the overall water consumption is utilized by agriculture sector (Aquastat, 2002).

Water consumption in agriculture

Source: FA0 2006.

Water vs. Population: non-climate scenarios

Water vs. Population: non-climate scenarios

People with no access to an improved water source

Total: 2.6 billion

People with no access to improved sanitation

Source: Calculated based on UNICEF 2006a.

Water vs. People

Impact of human activities on freshwater resources and their management, with climate change being only one of multiple pressures (modified after Oki, 2005).

Presentation outlines:

- **1. Vulnerability concept**
- 2. Current global and regional water situation
- 3. Global and regional water situation & CC
- 4. Vulnerability example
- 5. Conclusion

Direct Observations of recent climate change

Projections of Future Changes in Climate

Projected warming in 21st century expected to be greatest over land and at most high northern latitudes and least over the Southern Ocean and parts of the North Atlantic Ocean

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

Projections of Future Changes in Climate

Projected Patterns of Precipitation Changes

Precipitation increases very likely in high latitudes

Decreases likely in most subtropical land regions

Direct Observations of recent climate change

Observational evidence from all continents and most oceans shows that many natural systems are being affected by regional climate changes, particularly temperature increases.

System	Recent Warming Effects (1970-2004)		
Snow, ice and frozen ground	 Enlargement and increased numbers of glacial lakes. Increasing ground instability in permafrost regions. Changes in some Arctic and Antarctic ecosystems. 		
Hydrological systems	 Increased run-off discharge in many rivers. Changes on thermal structure and water quality of lakes and rivers 		
Terrestrial biological systems	 Earlier timing of spring events (bird migration & egg-laying). Shifts in ranges in plant and animal species. Earlier 'greening' of vegetation in the spring linked to longer thermal growing seasons. 		
Oceans	•More acidification with an average decrease in pH of 0.1 units.		

The impact of sea-level rise [Middle East case study]

■Global rate of the SLR ,1.8 mm/year [1961 – 2003].

•Projected SLR, 1 to 3m in the 21st century.

	Projected SLR				
	1m	2 m	3m	4 m	5m
country area	2.6 % 🗲		Qatar		▶ 13.0%
population,	10% 🗲		Nile Delta regio	n	▶ 20%
	5%		U AE &Tunisia		\rightarrow
agricultural extent	12.5% ←		Nile Delta regior	n	▶ 35%
urban extent	5%	Egypt,	Libya, UAE, &	Tunisia	10%
wetlands		Qatar,	, Kuwait, Libya,	& UAE	

CC impact on sea-level rise in Middle East

Exposed population to the negative impacts of 5m SLR. (Dasgupta et al., 2007)

Is there a clear trend of regional precipitation?

Annual rainfall in Egypt, Morocco and Tunisia (1901-2000) aggregated at the country level.

Annual rain distribution in Kairouan, Tunis (1950-2001)

Source: AIACC- AF90 Final Report (2006).

Annual rainfall — Mean annual rainfall

Examples of current vulnerabilities of freshwater resources and their management; in the background, a water stress map based on Alcamo et al. (2003a).

No/low stress and per capita water availability <1.700m³/vr Water availability: average annual water availability based on the 30-year period 1961-90

Changes in Available Water Resources

(based on 6 GCM projections under IPCC/AR4)

Blue: significant increase; **Grey:** no change;

Red: significant decrease; **White:** change direction uncertain

CC impacts on water sources (summary)

- Flow of the rivers.
- Salinity and water quality.
- groundwater recharge.
- Balance between the water demand & water supply.
- Water accessibility factors.
- Watershed degradation and desertification.
- Infrastructure & policy and conflicts.

Presentation outlines:

- **1. Vulnerability concept**
- 2. Current global and regional water situation
- 3. Global and regional water situation & CC
- 4. Vulnerability example
- 5. Conclusion

Example:

Multi-criteria vulnerability analysis of on-farm irrigation in Egypt

Spatial and temporal vulnerability of on-farm irrigation to CC

Components of vulnerability analysis

•MCA (multi criteria analysis) of vulnerability.

•Community-based assessment

•Representative variables used in the pilot assessment to characterize the vulnerable groups:

components	Proxy variable	components	Proxy variable
	1. Climate conditions and		1. Land ownership
	observed changes		2. Crop pattern
1. Natural	2. Soil salinity		3. Corps productivity
	3. Water table	3. Agriculture	4. Irrigation systems
	4. Extreme weather events	management	5. Irrigation-water use
	5. Pests & disease		6. Fertilizers use
	1. Population density		7. Drainage systems
2. Human resources	2. Agriculture lobar force		1.Finance
	3. Rural population		2. Agriculture-production
	4. Knowledge capacity	4. Economic &	inputs
	3	Policy capacity	3. Agri-products quality
			4. Marketing limitations

5. Policies conflicts

Medany et al., 2009

Vulnerability analysis:

OFIVI construction and weighting

- OFIVI is an aggregated dimensionless index ranged from 0 to 1.
- •The index can be applied locally or spatially and with different aggregation levels of the input data.
- •OFIVI development methodology based on UNDP methodology of calculating "Human Development Index (HDI)" (UNDP, 2005).

Vulnerability Index

Vulnerability Index

Economist.com

Tuesday June 16th 2009

Food importers are buying agricultural land of poor countries

Farms race

Selected investors, hectares obtained, 2006-09, '000

A: Other deals (area unknown)

Target	Investor	Deal type/value
Cambodia	Kuwait	Land for rice
China	United States (Goldman Sachs)	\$450m-500m, poultry and pigs
Ethiopia	India	\$4bn
	UK (Sun Biofuels)	Jatropha
	Saudi investors	\$100m
Malawi	Djibouti	unknown
Mozambique	UK (Sun Biofuels)	Jatropha
Sudan	Egypt Kuwait Qatar	Wheat (2m tonnes pa) "Giant" strategic partnership Joint holding firm
Turkey	Bahrain (Agricapital)	\$500m (may rise to \$3bn-6bn)

B: Failed deals

Target	Investor	Size of deal	
Mozambique	China	\$800m	
Philippines	China	1.24m ha	
Indonesia	Saudi Arabia (Saudi Binladin Group)	0.50m ha	
Madagascar	South Korea (Daewoo)	1.30m ha	

Conclusion

•The present water economy and patterns of water use is unsustainable, and it will be most vulnerable under CC.

•Climate change, rapid population growth, and unsustainable wateruse patterns will add more stresses on water resources in the Arab region (Arid and semi-arid countries), and increase the vulnerability to water scarcity.

•Policy actions and strategic plans is essential key factors of reducing the impacts of CC over water sector.

Thank you...