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Executive summary 

Road safety is a key issue that is salient in all communities worldwide and the Arab region in 
particular. As a result, the Statistics Division at the United Nations Economic and Social 
Commission for Western Asia (ESCWA) conducted a pilot project on the use of complementary data 
sources on car crashes. Data sources from both the private and the public sector were investigated 
and several key challenges were faced. These challenges include siloed data, lack of regulatory 
frameworks for data sharing, lack of transparency between governmental agencies, and general 
sensitivities towards sharing data. As a result, open data from the United Kingdom on car crashes 
were obtained, and street data from OpenStreetMap (OSM) were added as a complementary data 
source. Feature engineering was done on OSM data to extract road curvature, and the results were 
inputted into decision trees, gradient boosted trees and random forest to predict a crash injury 
severity. The results show that there seems to be a relationship; however, further work is needed to 
achieve more reliable results and to bring the experimental nature of machine learning more in line 
with official statistics. The exercise highlighted the possible benefits of using machine learning 
algorithms to understand car crashes. These benefits include the abilities to see the logic of the 
prediction from the decision tree and to see which features the models consider important. 
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Introduction 

Road safety is a key issue that is salient in all communities worldwide and the Arab region in 
particular. Research has shown that there is a disproportionate rate of death to the population and 
the number of vehicles of low- and middle-income countries compared to high-income countries. 
The risk of road crash death in low-income countries is more than three times higher than in  
high-income countries, with an average rate of 27.5 deaths per 100,000 population in the former, 
compared to 8.3 deaths per 100,000 population in the latter.1 

Regardless of the income level, road safety remains a critical and important issue. Road traffic 
injuries are one of the leading causes of death of young adults and children.2 As a result, road safety 
has garnered international focus to the extent that the United Nations included road safety in the 
targeted goals of the United Nations 2030 Agenda for Sustainable Development and has specifically 
assigned some targets addressing this issue. Target 3.6 of the Sustainable Development Goals 
(SDGs) aims to reduce the number of global deaths and injuries from road traffic accidents by half 
by the year 2020, and target 11.2 focuses on improving road safety through public transport.3 The 
United Nations General Assembly also issued a resolution reaffirming the importance of road safety 
and urging member States to implement road safety policies that protect vulnerable individuals.4 

Noting the magnitude of road deaths and injuries in the Arab region, the purpose of this paper is to 
highlight some of the potential data sources related to road safety, and to present a pilot project 
conducted by the Statistics Division at the United Nations Economic and Social Commission for 
Western Asia (ESCWA) on the use of complementary data sources on car crashes. Several studies 
dive into the detailed use of one or two complementary data sources with a great deal of focus 
given to the technical aspects. In this paper, a more pragmatic approach will be taken to showcase 
several complementary data sources used, with comments on their availability, and related costs to 
be incurred for obtaining them. Moreover, the various methodologies for data analysis will be 
proposed, highlighting the use of machine learning in providing additional insights into car crashes. 

  

                                                           
1 World Health Organization, 2018. Global Status Report on Road Safety. 
2 Ibid. 
3 United Nations Economic and Social Council (ECOSOC), 2019. Special Edition: Progress towards the Sustainable Development 

Goals. Report of the Secretary-General. Advanced unedited version. New York: United Nations. 
4 United Nations General Assembly, 2020. Improving global road safety. Resolution adopted by the General Assembly on 31 August 

2020 (A/RES/74/299). Available at https://undocs.org/en/A/RES/74/299 (accessed on November 2020). 

https://undocs.org/en/A/RES/74/299
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I. Literature Review 

Addressing road safety and achieving the stated SDG goals and targets requires greater insight into 
the issue at hand. To gain this insight, data is needed along with adequate analytics tools and 
methodologies. One key source are the official data collected by governments. These data are 
typically sourced from police records that are, in turn, gathered from accident sites.5 These data 
consist of officer observations, information gathered from those involved in the crash, and witness 
statements. Table 1 is an example of the type of information that can be gathered from police 
records.6 National statistical offices (NSOs) typically rely on this data for their analysis and reports. 
Given the importance of official car crash data, several databases exist on the subnational, national 
and regional levels to store and disseminate official car crash data. Some examples include the 
French national road traffic accident database, known as BAAC, the United States’ Fatality Analysis 
Reporting System, and the European Union’s Community database on Accidents on the Roads 
in Europe. 

Table 1. Dubai crash metadata 

Attribute name Attribute description 

psn_id  

record_status  

acd_date Accident date 

acd_time Accident time 

acc_location The statement describes the location of the accident 

Id System-generated ID for the accident 

acc_type Accident category (minor, major, etc.) 

acc_cause Cause of the accident 

Weather Description of the weather 

road_status Description of the road status 

Age Main actor age 

                                                           
5 International Transport Forum, 2011. Reporting on serious road traffic casualties: Combining and using different data sources to 

improve understanding of non-fatal road traffic crashes. Paris. Available at https://www.itf-
oecd.org/sites/default/files/docs/road-casualties-web.pdf; and Directorate General Transport and Energy of the European 
Commission, 2007. Best Practices in Road Safety: Handbook for Measures at the European Level. Available at 
https://ec.europa.eu/transport/road_safety/sites/roadsafety/files/pdf/projects_sources/supreme_d_handbook_for_measures_at_
the_european_level.pdf. 

6 Dubai Pulse, 2019. Dubai Traffic Accidents. Available at https://www.dubaipulse.gov.ae/. 

https://www.data.gouv.fr/fr/datasets/bases-de-donnees-annuelles-des-accidents-corporels-de-la-circulation-routiere-annees-de-2005-a-2019/
https://www.itf-oecd.org/sites/default/files/docs/road-casualties-web.pdf
https://www.itf-oecd.org/sites/default/files/docs/road-casualties-web.pdf
https://ec.europa.eu/transport/road_safety/sites/roadsafety/files/pdf/projects_sources/supreme_d_handbook_for_measures_at_the_european_level.pdf
https://ec.europa.eu/transport/road_safety/sites/roadsafety/files/pdf/projects_sources/supreme_d_handbook_for_measures_at_the_european_level.pdf
https://www.dubaipulse.gov.ae/
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Attribute name Attribute description 

Gender Main actor gender 

injury_severities Driver injury level 

driving_license_issue_date Driving license issue date 

Occupation Driver occupation 

Intoxication Intoxication 

seat_belt_status Flag 

year_manufactured Year manufactured 

insurance_company_name Insurance company name 

Source: https://www.dubaipulse.gov.ae/. 

There are, however, certain issues facing the collection of official data. One critical issue is that 
not all accidents are reported to the police.7 For example, in rural areas, accidents can occur without 
the knowledge of the police. Additionally, crashes that have material damage only without injuries 
or deaths are not systematically recorded by the police. That means that car crashes tend to be 
understated in official datasets. Moreover, fatalities can occur at the hospital days after a car 
accident, and not all countries account for the 30-day follow-up rule set by the World Health 
Organization (WHO), which is reflected in the underestimation of the number of fatalities in official 
data.8 Nevertheless, the number of fatalities at the time of the accident remains the most reliably 
measured metric in official data. However, the issue with recognizing and recording fatalities is 
symptomatic of a larger problem within official data, which is the lack of unified definitions and 
methodologies for data collection.9 This makes the data less comparable between different 
countries. While, on the European front, significant progress has been made to address these 
issues, they still hold for other regions, especially less developed ones. Finally, data gathered at 
accident sites provide only part of the full picture;10 and additional data and metrics are needed to 
provide better insights. 

Several recommendations are currently available to improve the quality and availability of  
road-safety data. These include the development of national observatories on road safety;11 
the development of common data collection surveys for the police first responders; and the 
establishment of proper road data systems for reliable and timely data on road safety.12  

                                                           
7 International Transport Forum, 2011. 
8 Ibid. 
9 Directorate General Transport and Energy of the European Commission, 2007. 
10 International Transport Forum, 2011; World Health Organization (WHO), 2010. Data Systems: A Road Safety Manual for Decision-

makers and Practitioners; and Sayed, T., M. H. Zaki and J. Autey, 2013. A novel approach for diagnosing road safety issues using 
automated computer vision techniques. 16th International Conference on Road Safety on Four Continents, Beijing, China, 15-17 
May 2013. Swedish National Road and Transport Research Institute. 

11 Morris, Thomas, P. and others, 2005. Designing the European road safety observatory. International Journal of Injury Control and 
Safety Promotion, vol. 12, No. 4, pp. 251-253. 

12 WHO, 2010. 

https://www.dubaipulse.gov.ae/
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To be effective, data collection surveys need to conform to international definitions and standards 
on the different aspects of car accidents, such as the severity of non-fatal injuries and the 30-day 
follow-up rule.13 Data for road safety needs to be supplemented from other sources for greater 
insight. It is suggested to link data from transport and health services to supplement police data, 
thus providing improved insights to support initiatives and legislation, and addressing the issue of 
underreporting in official data.14 

Official data capture critical information on car accidents. Police accident datasets have the benefit 
of granularity compared to those created by NSOs. But the information gathered can still be 
augmented by additional data to complement it and make it more comprehensive. This can be done 
by turning to complementary data, which are defined in this paper as data that support or augment 
official data gathered from sources other than those collected by police officers at the scene of a 
crash. One key area that falls under complementary data are big data. Commonly defined as data 
that are too large and complex for traditional computational tools, big data are characterized by 
volume, velocity, variety, and veracity.15 These four characteristics describe data sets that are large, 
expanding very quickly, structured and/or unstructured, and are of a quality level that enables 
decision making.16 Examples of big data include sensor data, closed-circuit television (CCTV) 
footage, and transaction data. The focus on complementary data instead of big data stems from the 
need to incorporate a variety of data regardless of their volume and velocity. A dataset is 
considered “right” if it carries valuable information for the intended analysis.17 

Complementary data can help improve the reliability of official datasets. As previously stated, best 
practices for improving data quality include linking police data to transport and health-service 
datasets.18 This linkage would allow for a better understanding of injuries and fatalities from 
different incidents on the road and would help address the issue of underreporting. Ghandour, 
Hammoud, and Telesca used crowdsourced accident reports from social media to conduct spatial 
analyses and hazard vulnerability analyses.19 Crowdsourced data were used by the authors to 
address the underreporting issues in official data sources, and were parsed to include geolocation, 
a feature that is not available in official police data in Lebanon.20 

Complementary data can also help shape a more complete picture of road safety. Several studies 
were conducted on improving insights into road safety. Chong and Sung highlighted different road 

                                                           
13 International Transport Forum, 2011. 
14 Ibid. 
15 Economic and Social Commission for Western Asia (ESCWA), 2015. Official Statistics and Emerging Sources of Data: Implications 

for ESCWA Statistical Activities: Big Data (E/ESCWA/SD/2015/IG.1/5). Eleventh session of the ESCWA Statistical Committee, 
Amman, 4-5 February 2015. 

16 Ibid. 
17 Wessel, M., 2016a. You Don’t Need Big Data — You Need the Right Data. Harvard Business Review, 3. 
18 International Transport Forum, 2011. 
19 Ghandour, A. J., H. Hammoud and L. Telesca, 2019. Transportation hazard spatial analysis using crowd-sourced social network 

data. Physica A: Statistical Mechanics and Its Applications. Elsevir, vol. 520(C), 309-316. 
20 Crowdsourced data are data obtained through the contribution of a group of Internet users. 
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management systems employed in Europe, the United States and South Korea.21 These systems 
manage data such as road slopes from fiber-optic sensors, weather and traffic volume from CCTVs 
to evaluate various aspects of road safety. Their goal is to detect bridge collapses, fires and other 
road-related disasters. Sayed, Zaki and Autey used video data to detect traffic-related incidents and 
violations and to calculate key metrics such as time to collision.22 They demonstrated the insights 
that can be generated by analysing an intersection and providing detailed statistics for bicycle-car 
conflicts. Their analyses highlighted areas where safety hazards exist and provided suitable 
recommendations. A paper published by the Bureau of Infrastructure, Transport and Regional 
Economics in Australia detailed the different sources of data available for traffic analytics.23 
Traditional sources included sensors and traffic cameras, while new sources include the global 
system for mobile communications (GSM), the global positioning system (GPS), Bluetooth, and 
roadside sensors. 

A lot of the complementary data sources mentioned by different papers and studies have been 
available and in use for a long time. Yet, they are referenced to now as possible disruptive 
innovation sources. Maxwell Wessel stated in his article “How big data is changing disruptive 
innovation” that disruptive innovation, particularly in the field of technology, is built upon the use of 
existing sources of data in different ways.24 Some of the sources of new data are existing data 
sources coupled with new tools to process the data. One example is the use of CCTV footage which 
Sayed, Zaki and Autey, Mitchell and Chong and Sung refer to.25 The availability of cameras and their 
use in generating data is nothing new, but the real innovation is in the new ways to process the 
captured footage. Computer vision techniques allow for new data to be extracted from videos 
recording traffic flows, among others. 

  

                                                           
21 Chong, K. and H. Sung, 2015. Prediction of road safety using road/traffic big data. International Conference on Semantic Web 

Business and Innovation (SWBI2015), p. 23, Sierre, Switzerland. 
22 Sayed, Zaki and Autey, 2013. 
23 Mitchell, D., 2014. New traffic data sources: An overview. Bureau of Infrastructure, Transport and Regional Economics (BITRE). 

Canberra, ACT, Australia. 
24 Wessel, M., 2016b. How big data is changing disruptive innovation. Harvard Business Review, 27. 
25 Sayed, Zaki and Autey, 2013; Mitchell, 2014; and Chong and Sung, 2015. 
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II. Introduction to ESCWA’s attempt at road 
safety analytics using complementary data 

The heads of statistical offices of the Arab countries recommended in their 13th session of the 
ESCWA Statistical Committee meeting, which was held in Beirut in January 2019, that the ESCWA 
Secretariat work on a pilot study on the usage of complementary data for a sector of its choosing 
to showcase the opportunities and challenges involved. The Statistics Division at ESCWA, in 
cooperation with the Technology Development Division and the Central Administration of Statistics 
in Lebanon, proposed a pilot study on the use of new technologies as complementary data sources 
to complement and update data from official sources. One of the identified projects was to 
investigate the transport sector regarding the use of complementary sources of data in analysing 
and understanding the different factors related to road safety in Lebanon, Dubai and Jordan. 

As an initial step to analyse road safety, the objective of the study needed to be defined and 
narrowed down. The objective reached was to identify the means to improve the information 
accompanying fatal car crashes by highlighting the factors that might lead to severe car accidents. 
By providing such information, policymakers and urban planners may assume the necessary 
measures to address these factors, thus cutting down on the number of car crashes and fatalities. 
To come up with insights into the factors that are correlated with severe car accidents, the type of 
data that can add value to the analysis needed to be identified. Accordingly, the following datasets 
were deemed to carry valuable information for analysis: 

1. Official police data. 
2. Weather and solar azimuth data. 
3. Road-related data. 
4. Traffic-related data. 

A. Official police data 

Official police data are valuable sources of information. They detail the observations made at an 
accident site by police officers. The value of this data type increases significantly if the responding 
officers are also well trained in reporting and analysing accidents. Typically, police data contain 
information on the type of accident (such as vehicle-vehicle or vehicle-pedestrian), type of vehicle, 
road condition, condition of the driver, and others. These features differ from one country to 
another depending on what the officers are trained to collect and depending on the intended use 
of the data. Often, data is collected primarily for possible litigation. Police data suffer from 
underreporting, as was addressed in the chapter on literature, and the quality of the data varies 
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from one country to another based on the level of training and data can be recorded by law 
enforcement. Despite its shortcomings, official police data remain the most valuable source 
for analysis. 

For the project, an attempt to acquire the official police datasets for Lebanon and Dubai was made. 
In Lebanon, the data is available from the Internal Security Forces (ISF). Since the ISF is part of 
the Ministry of Interior, a request was made to acquire the data through the ministry, in addition 
to a request through the focal point of ESCWA’s Statistics Division in the Lebanese Central 
Administration of Statistics. In Dubai, United Arab Emirates, the data are available from the Dubai 
Police and Dubai Pulse, an online platform for open data created by the Government of Dubai.26 
ESCWA acquired the car accident data for the 2017, 2018 and 2019 from Dubai Pulse. Additional 
data was requested to ensure that time-dependent patterns are adequately captured. The requests 
to Lebanon and Dubai are still pending. The ISF had sent out aggregated data on car accidents, 
while disaggregated data is still needed for the analysis. The request for official police data from 
Jordan is currently being worked on. 

B. Weather and solar azimuth data 

Weather conditions can have a significant effect on visibility and grip on the road; and the position 
of the sun can potentially be blinding to drivers. As a result, incorporating data on hourly weather 
conditions and solar azimuth can potentially enhance the final analysis. Features typically included 
in weather data are temperature, humidity, precipitation, wind speed, and visibility. These features 
are related to the condition of the road (wet or dry) and the condition of the driver (visibility). 
Weather data are available at online sources such as Weather Underground;27 Open Weather Map;28 
or government websites, including the National Aeronautics and Space Administration (NASA), the 
National Oceanic and Atmospheric Administration (NOAA), or their European equivalents. Solar 
azimuth data can be found on such websites as Sun Calc.29 Weather and solar azimuth data can 
either be obtained free of charge if the website allows for free data download by resorting to web 
scraping, by using an application programming interface (API), which can be free depending on 
the service requested, or by using an API that may be free to the public and not tied to a request 
for service. 

C. Road-related data 

In many car crashes, the condition of the road itself is a significant factor. Potholes, slippery 
surfaces and overall unsafe road design can all play a role in road safety incidents. While official 
police records include a feature column that describes the road condition, often more information 

                                                           
26 See https://www.dubaipulse.gov.ae. 
27 See https://www.wunderground.com/. 
28 See https://openweathermap.org. 
29 See https://www.suncalc.org. 

https://www.dubaipulse.gov.ae/
https://www.wunderground.com/
https://openweathermap.org/
https://www.suncalc.org/
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is required than that collected by law enforcement. In order to find information on road quality, road 
maintenance records and high-resolution satellite imagery were considered. Data on the shape of 
the roads and the quality of the highways, noting that it is easier to extract this information given 
the highway’s width, could be extracted through convolutional neural networks (CNN). Additionally, 
data from OpenStreetMap (OSM) were sought out.30 Features in this dataset included the shapefiles 
and speed limits of the roads in the Middle East. The shapefiles could be processed to extract the 
shape and curvature of different road segments. 

These data sets can be acquired from different sources. Satellite imagery can be typically obtained 
free of charge from NASA and the European Space Agency.31 However, free availability depends on 
each agency’s policies and the type of imagery requested as some might be available but need 
approval or payment. Road shapefiles are available free of charge from OSM. Road maintenance 
records may be available to the public or through requests to ministries of public works (name of 
ministry changes from country to country), depending on each country’s data policies. 

D. Traffic-related data 

Data on traffic conditions are critical to understand the severity of car accidents. For instance, it can 
be assumed that crashes involving fast-traveling vehicles cause more severe damage. As a result, 
investigating this assumption and incorporating it into the analysis can help determine the factors 
relating to severe car accidents. To gain this type of insight, different data sources were sought to 
be incorporated into the project. CCTV camera footage of road segments was a key data source. 
Utilizing different techniques from computer vision, metrics such as the number of vehicles, 
average speed, and average deviation of vehicles from their lanes can be calculated. Navigation 
data from third parties can also provide information on average speed across different road 
segments. Several efforts were made to acquire official traffic counts originating from either 
manually counting vehicles, which can be extrapolated for the rest of the year, or from sensors 
installed on the roads. The attempt to acquire this type of data has not been successful as the 
requests are still being processed. The possibility to use mobile phone data to estimate traffic 
flows was also investigated into, yet was later abandoned given the challenges that would need 
to be overcome. 

For the project, various sources were sought to acquire the necessary data. CCTV road footage is 
usually part of databases at the police and/or the ministry of transportation, while official traffic 
counts are typically kept at the ministries of transportation and infrastructure. Navigation data can 
be obtained from widespread navigation software providers such as Google, creator of Google 
Maps, and Here, creator of HERE WeGo. Since Google’s historical data was not available through 
an API, a partnership was required. In order for ESCWA to access the data, a partnership between 
Google and the United Nation’s headquarters was needed. In the case of datasets from HERE, 

                                                           
30 OpenStreetMap is a collaborative and crowdsourcing mapping project to create an editable map of the world. 
31 See https://earthdata.nasa.gov/earth-observation-data/visualize-data and https://earth.esa.int/web/guest/data-access/browse-

data-products, respectively. 

https://earthdata.nasa.gov/earth-observation-data/visualize-data
https://earth.esa.int/web/guest/data-access/browse-data-products
https://earth.esa.int/web/guest/data-access/browse-data-products
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which does not offer historical data through its APIs either, a direct purchase was required. The 
price of navigation data is usually high and can range from tens of thousands to hundreds of 
thousands of US dollars depending on the features of the data or the service requested. 

E. Challenges 

Several hurdles were encountered while trying to implement the project. One trait that characterizes 
many countries in the Middle East is their unwillingness to share data considering them to be 
sensitive. Similar issues were encountered during the several phases of implementation with 
delayed clarity on whether such type of information would be shared or not, without mentioning 
explicitly the underlying reasons for not sharing such information. Lebanon, for instance, had 
assured to provide the requested police data, to date such data is still lacking. Moreover, CCTV data 
is unlikely to be shared for national security reasons. Dubai had been requested to provide several 
different data sets, but no response was received. Some data were acquired from already published 
online data by Dubai Pulse, but it is worth noting that some of the datasets were no longer available 
on the websites a few weeks after obtaining them. This raises the issue of availability, reliability and 
continuity of the data source. Additional key issues are the prevalence of data silos and the lack of 
transparency between government entities. Upon contacting different NSOs to request CCTV and 
road sensor data, their responses were that either such data did not exist or they did not have such 
data. This might indicate that NSOs are not aware of the type of data available and obtainable at 
other national agencies or entities; they do not have access to data themselves; and/or there is no 
regulatory framework put in place to organize and institutionalize acquiring such data. Access to 
this type of data and linking it to other datasets would provide useful insights for line ministries, 
urban planners, transport engineers, lawmakers, and other stakeholders. In the wake of the data 
revolution, there is an increasing emphasis on the key role of NSOs in the collection and 
dissemination of such data.32 

Once the necessary data are received, several accompanying challenges arise, including analysing 
mobile phone data for traffic-related purposes and determining whether or not an individual was in 
a vehicle stuck in traffic. Additionally, mobile phone tracking is lower in accuracy compared to other 
technologies such as GPS.33 Hardware requirements were another encountered key challenge. Once 
CCTV data or historical high-resolution satellite imagery are received, parallel processing is needed 
to extract the necessary information on time. Parallel processing refers to a form of computation 
where tasks are distributed to several processors that are typically contained in separate machines 
and are run simultaneously to reduce the time needed for the task to be completed. This requires 
hardware and specific software or code libraries. As a result, it is necessary either to acquire high-
end computing devices with dedicated graphics processing units (GPUs) to train deep learning 
models or to rent out virtual machines on the cloud. A possible way to resolve this issue was 
envisaged by collaborating with the Qatar Computing Research Institute (QCRI) to utilize some of 

                                                           
32 International Transport Forum, 2011; and ESCWA, 2015. 
33 Mitchell, 2014. 
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their computational powers and related services when needed. QCRI expressed its readiness to 
provide such services to ESCWA when needed. 

F. Machine learning pipeline and proposed analysis 

The main analytical tools used in this paper are based on machine learning. Machine learning 
algorithms function differently from traditional programmes. They are algorithms that learn 
patterns by looking at examples of data (trained on data) rather than having the patterns and logic 
directly programmed into them. To implement a machine learning algorithm, steps are typically 
followed in a sequence, referred to as a pipeline. A typical machine learning pipeline involves 
several steps and algorithms. This pipeline also requires that the data be structured in a certain way 
to allow a machine learning algorithm to function. 

1. Preprocessing stage 

The predominant work done during the preprocessing stage revolves around preparing the data to 
be fed into the model. The dataset is typically divided into feature columns and a target column. The 
feature columns contain information that can help in predicting the target column. In the case of car 
crashes, for instance, features can include whether or not the driver was intoxicated or the road was 
illuminated at night. These are just examples of features that can be related to the fatality of a car 
crash. Features can be numerical, such as the speed of a car, or categoric, such as the make of a car. 
Categorical data need to be processed before they can be used by a machine learning model since 
most models require numeric values as inputs. A target column contains the value to be predicted. 
It can be a numerical (continuous value or integer) or a categorical value. 

Several techniques are available to convert categorical into numerical data. One hot encoding 
converts a column that contains categorical values into a vector representing each categorical value. 
If an observation contains a specific categorical value, that value is assigned a 1 in the vector and 
the remaining values are assigned a 0. In the previous example, car crash fatality would be the 
target column of the dataset. A fatal car crash would be labeled as a 1 (referred to as a positive 
value) and a non-fatal crash would be labeled as a 0 (referred to as a negative value). The dataset 
should contain both positive and negative values to enable a machine learning algorithm to learn 
the patterns in features for fatal versus non-fatal crashes. 

The dataset needs to be divided into a training set and a validation set. The training set is used to 
enable machine learning, while the validation set is used to evaluate the performance of the trained 
model on data that the model is not familiar with to get an idea of how the model will perform on 
future unseen data. An alternative method for splitting the dataset is to use an algorithm called  
k-fold cross-validation. The algorithm works by dividing the data into k pieces (k is a number 
specified by the user). The model is then trained on k-1 pieces with one piece held out for validation. 
This process is repeated with a different piece held out until all k-folds have been held out. 
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The validation score is aggregated for the k-folds which results in a more robust evaluation of the 
performance of the model. 

2. Training and validation stage 

Preprocessed data are necessary for the training and validation stage. In this stage, one or several 
machine learning algorithms are selected to be trained and validated. Supervised machine learning 
algorithms are trained on datasets that include a target value to enable the models to detect the 
patterns associated with target values, while unsupervised machine learning models, which try to 
segment the dataset based on detected patterns, are trained on datasets without a target value. 

Performance evaluation is needed as follow-up to identify the quality of the trained models. Metrics 
are employed in this task to quantify the performance of each model. Unsupervised models are 
typically coupled with metrics that measure how well the model was able to detect underlying 
patterns within the dataset, while supervised models are typically coupled with metrics that 
measure how well the models were able to predict their target. The models are evaluated during the 
training phase on the training dataset. For supervised learning, training metrics show how well the 
model was able to learn and predict values from data that it had already seen. Training metrics 
alone, however, cannot be used to properly evaluate a model. 

Validating the results of the trained models is an important step to ensure that the final result is 
usable and is done by using the same metrics that were used during the training phase on the 
validation dataset. The model is fed the feature columns of the validation dataset, and predictions 
are made. The predictions are then compared to actual values in the target column, and the metric 
is calculated. The validation metric represents how well the model will perform on unseen data. 
Both the training and validation metrics are important to diagnose any potential issues within the 
model, such as variance and bias. They also aid in selecting the best model for the problem. 

Following the training and validating stage, the resulting metrics are observed to diagnose any 
possible issues with the models and to identify actions needed to improve the current results. 
In real-world applications, the entire process of preprocessing, training and validating is repeated 
several times in order to maximize the performance of the final model. This is done by testing 
different models, trying out different processing techniques and changing different options to 
measure the impact on the selected metrics. 
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III. Sample analysis of severe car crashes 
in the Greater London area: An illustration 

Due to the inability to acquire the data requested from the selected countries within the time frame 
and as a demonstration of what can be achieved by applying the proposed analysis explained 
above, car crash data was acquired for the United Kingdom from 2005 to 2014. The data were 
originally gathered by police officers under the instruction of the Department for Transport and 
downloaded from Kaggle, a Google-owned website geared towards data science that includes 
dataset hosting.34 The data is split into three datasets: the first dataset contains general information 
regarding the crash itself; the second dataset contains information regarding the vehicles involved; 
and the third dataset contains information regarding casualties. 

A. Objective and scope 

The scope of the analysis was restricted to the Greater London area to accommodate the available 
hardware. This helped reduce the amount of observation from two or three million to some three 
hundred thousand. The objective was changed from understanding severe car crashes to 
understanding severe casualties, which was done to incorporate the data on casualties and vehicles 
into the analysis. The United Kingdom defines three levels of casualty severity: fatal, serious and 
slight.35 Fatal severity includes instantaneous deaths and deaths within 30 days after the crash as a 
result of injuries. Serious severity includes injuries that lead to hospitalization and injuries such as 
fractures, burns and severe cuts in addition to injuries that cause death after the internationally 
recognized 30-day period. Slight severity includes minor injuries that are neither serious nor fatal. 

One key issue arises when attempting to predict and explain severe and fatal injuries, namely, class 
imbalance. Severe and fatal injuries from crashes are typically less frequent compared to slight 
injuries. It should be mentioned, however, that the number of severe and fatal injuries will be 
different based on the context of the area under study. Different factors can significantly affect the 
number of severe and fatal injuries within a dataset for a given area. These factors may include 
legislation and enforcement, health care and the procedure for recording a car crash. In the Greater 
London area, severe and fatal injuries are significantly lower than slight injuries, as shown  

                                                           
34 Department for Transport, 2014. Road Safety Data 2004-2014 [data file]. Available at https://www.kaggle.com/benoit72/uk-

accidents-10-years-history-with-many-variables (accessed on 20 May 2019). 
35 Department for Transport, 2004. Stats 20: Instructions for the Completion of Road Accident Reports – With Effect from 1 January 

2005. Available at 
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/230597/stats20-2005.pdf 
(accessed on 17 June 2019). 

https://www.kaggle.com/benoit72/uk-accidents-10-years-history-with-many-variables
https://www.kaggle.com/benoit72/uk-accidents-10-years-history-with-many-variables
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/230597/stats20-2005.pdf


13 

 

in figure 1. This highlights the class imbalance issue within the dataset where one category, namely, 
slight injuries, dominates over other categories. The class imbalance makes learning patterns by 
algorithms difficult. To reduce the impact of class imbalance, data labeled as “fatal” or “serious” 
were combined into a new category, namely, “severe or fatal”. The target of the analysis was 
changed to predicting and explaining severe or fatal car crash injuries. 

Figure 1. Casualty frequency in the Greater London area, 2004-2014 

 
Source: Data compiled by ESCWA. 

B. Data 

The datasets contain several features but only those used in the analysis will be highlighted. 
By focusing on casualty severity instead of accident severity, more features became available to 
the model, where accident severity refers to the severity of the most severe injury, while casualty 
severity indicates the severity of each individual casualty. This was achieved by merging the general 
data on car crashes with data on vehicle and casualty. Thus, each observation contains information 
on a single casualty, the vehicle they were in (if they were in a vehicle) and general information 
about the crash. Table A1 in the annex describes those features in more detail. 

In the Greater London area, the heat map generated from the data in figure 2 indicates that the 
highest occurrences of total car crashes across the years seem to be concentrated in the middle of 
London. This observation is likely due to the population and traffic density in the area. To get a 
better idea of at-risk locations, road segments that had at least 100 crashes over the years were 
highlighted using the ratio of severe or fatal crashes given the total number of crashes in figure 3. 
The roads were already segmented in OSM data based on the presence of a curve. This is typically 
done to enable a geometric representation of a road with all its winding features. The 100-crash 
threshold was selected as the 35 road segments with the highest crash frequencies had a total of 
100 crashes or above. Including segments with lower frequencies may have resulted in misleading 
lethality ratios. Car crashes were assigned to road segments based on proximity as detailed in the 
section below. The figure paints a different picture compared to the car crash heatmap. Several road 
segments across Greater London have a high severe or fatal crash ratio given total crashes. 
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This ratio lies between a maximum of 21 per cent and a minimum of 4 per cent of car crashes for a 
given segment. However, it is important to note that the highest total crash frequency for a road 
segment was 194. 

Figure 2. Car crash frequency across the Greater London area 

 
Source: Data compiled by ESCWA. 

Several features were explored for crash severity. Figures 4, 5 and 6 highlight some challenges with 
the dataset that may cause problems down the line. Daylight and lights lit in the dark are the two 
dominating features regardless of casualty severity. “Daylight” has the most frequency of casualty 
severity followed by “darkness-lights lit”, making it difficult to find a pattern. Similarly, comparing 
casualty severity to the day of the week and hour of the day shows that the frequency of both types 
of severities increases and decreases in the same periods. The lack of clear relationships between 
the predictors and the target may result in an underperforming model. 
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Figure 3. Crash lethality for road segments with more than 100 crashes 

 
Source: Data compiled by ESCWA. 
Note: The five segments with the highest ratio of severe or fatal crashes overall crashes are labeled. 

 
Figure 4. Casualty severity by light conditions 

 
Source: Data compiled by ESCWA. 
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Figure 5. Frequency of crash severity given the day of the week 

 
Source: Data compiled by ESCWA. 

Figure 6. Frequency of crash severity given the hour of the day 

 
Source: Data compiled by ESCWA. 
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C. Complementary data 

Attempting to complement the data provided by the United Kingdom crash dataset, OSM data were 
acquired.36 The goal was to incorporate several additional features into the main dataset. Road 
segment shapefiles for the Greater London area were downloaded from OSM, which include the 
following data: speed limit, whether there is a bridge or tunnel, whether the road is one way or not, 
the name of the road, its identification number on OSM, and the multiline string (a series of points 
connected to each other to create a line that can be plotted) of the road itself. The multiline string 
data is based on the World Geodetic System (WGS) 84 geographic coordinate system, as is data on 
the longitude and latitude of the car crash. To assign each car crash to the closest road segment, the 
multiline strings and the geographic points created by the longitude and latitude of the car crash 
location were projected from WGS 84 to the EPSG:27700 Ordnance Survey National Grid reference 
system. This was done to ensure that distances calculated between any two points were relatively 
accurate. After projecting the data, a k-dimensional tree (kd-tree) was constructed from the multiline 
strings to speed up the nearest neighbour search. The kd-tree was then queried to retrieve the 
closest road segment to each crash site. 

Road shape data were used to feature engineer new attributes. The main attribute considered was 
curvature. The decision to extract this particular feature was made based on the literature on the 
subject. Pande and Abdel-Aty found that the presence of horizontal curvature was not significant for 
a single vehicle and severe lane-change related crashes but was negatively related to the likelihood 
of rear-end crashes.37 To estimate curvature, road sinuosity was used. Sinuosity is typically used in 
river studies to determine the curvature of rivers and was repurposed to estimate road curvature. 
Given a certain road segment, sinuosity refers to the ratio of the length of the road divided by the 
length of the shortest path between the start and endpoint of that road. 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟 𝑙𝑙𝑙𝑙𝑠𝑠𝑙𝑙𝑠𝑠ℎ
𝑠𝑠ℎ𝑠𝑠𝑟𝑟𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠 𝑝𝑝𝑟𝑟𝑠𝑠ℎ

 

                                                           
36 Several factors were considered before deciding to use OSM data and not to confine the analysis to the main road crashes 

database. In the United Kingdom, the investment in roads was mostly aimed at working on existing roads rather than building new 
ones. During 2000-2013, 46 motorways were built within the United Kingdom compared to 680 in Germany and 850 in France. 
Furthermore, the focus of the study is on the Greater London area, which reduces the probability of constructing new roads. The 
Greater London area is heavily populated, making it harder to develop new roads compared to more rural areas. It is also 
important to note that the global financial crisis of 2008 happened during the data-collecting period, namely, 2004-2014. This 
further restricted investments in roads. The focus on road curvature, however, would be less affected by investment on existing 
roads. There are differences in the data; yet, following an analysis of the roadworks situation, these discrepancies were 
identified as tolerable especially since this analysis is meant as a simple demonstration rather than a full-blown investigation. 
Some resources related to this analysis can be found at the following links: https://www.london.gov.uk/what-we-
do/transport/improving-londons-roads/road-network and 
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/341513/pdfmanforstreets.pdf; 
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/212590/action-for-roads.pdf. 

37 Pande, A. and M. Abdel-Aty, 2009. A novel approach for analyzing severe crash patterns on multilane highways. Accident 
Analysis and Prevention, vol. 41, No. 5, pp. 985-994. 

https://www.london.gov.uk/what-we-do/transport/improving-londons-roads/road-network
https://www.london.gov.uk/what-we-do/transport/improving-londons-roads/road-network
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/341513/pdfmanforstreets.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/212590/action-for-roads.pdf
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Several metrics were extracted based on sinuosity. Overall sinuosity was calculated based on the 
formula above if a road segment was a polygon, same point for start and end; then a point was 
interpolated at a distance equal to half of the road segment, effectively cutting the road segment in 
half; and overall sinuosity was calculated as the average sinuosity of both halves. In addition to 
overall sinuosity, several other metrics were calculated, namely, maximum (max) change, minimum 
(min) change, max-min change, and average change. Instead of using the overall distance of the 
line, these metrics were applied to smaller segments of five and ten meters. 

D. Machine learning 

The main tool used for analysis is the computer programme Apache Spark. The reason behind this 
choice was not the size of the data, but rather Spark MLlib’s implementation of decision trees. 
Classification and Regression Trees (CARTs) support categorical features as inputs.38 Scikit-learn, 
the de facto machine learning package for Python, only supports categorical features that are one-
hot encoded. One-hot encoding increases the number of features available and can adversely affect 
model performance. 

The development of the algorithms consisted of several stages. The first stage involved reading the 
data and converting the encoded data back to their original values. Next, road-based features were 
added to the main dataset by feature engineering the OSM shapefiles. The features were calculated 
twice, once based purely on the proximity of a point to a road and once based on the road name 
similarity, if available. The car crash, vehicle and casualty datasets were merged into casualty, and 
the features to train the model were selected. The features were divided into subsets to separate 
related features such as age and age band, and road features calculated using the different 
methods. Feature sets with the letter “a” have the age of casualty as a numerical feature, while 
feature sets with the letter “b” have the age of the casualty in ranges rather than numbers. 
Additionally, feature set 2 includes OSM data assigned based on road names, while feature set 3 
includes OSM data assigned based on proximity. More details on the feature sets can be found in 
table A3 in the annex. 

The data was then split into training and test using a stratified sampling approach based on 
the target (casualty severity). Given the issue of class imbalance, the training set was then 
undersampled such that the number of negative labels was sampled down to be equal to the 
number of positive labels. Spark was then used to fit a decision tree model to each feature set. The 
data were fitted using a ten-fold cross-validation approach. The decision trees were tuned using the 
grid search algorithm built into Spark’s k-fold cross-validation algorithm. The hyperparameters that 
were tuned were: max depth, which specifies the maximum depth of the tree, and min instance 
per node, which sets a minimum number of observations required per leaf node. More complex 
models were also trained to get better results. Random forest algorithm and gradient boosted tree 
algorithm were selected. Random forest works with several simultaneous deep decision trees. 

                                                           
38 Breiman, L. and others, 1984. Classification and Regression Trees. Chapman and Hall/CRC. 
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Each decision tree is given a sample of the data and a sample of the features to learn. The outputted 
prediction is the result of an aggregation of the different predictions using one of many techniques, 
such as voting where the highest vote determines if the predicted value is 0 or 1. Gradient boosted 
tree algorithms work by building decision trees sequentially rather than at the same time. Each tree 
is typically shallow and thus has high bias, and is constructed to better predict the observations that 
the previous tree got wrong. 

The cross-validation algorithm decides on the best model based on a user-selectable metric. The 
metric chosen for this case was the area under the precision-recall curve. Precision indicates the 
rate of correctly predicted positive labels given all predicted positive labels. Recall gives the rate of 
correctly predicted positive labels given all positive labels in the dataset. Improving a model’s 
performance on one can adversely affect the other. The area under the precision-recall curve gives a 
general value that indicates a model’s performance. The higher the area the better the model 
performs. This metric has the added benefit of not being significantly affected by class imbalance. 
Class imbalance means that accuracy, the number of correctly classified labels divided by all labels, 
would have been misleading. If 80 per cent of data was about slight injuries, then a model that 
simply predicts that all crashes lead to slight injuries would have an 80 per cent accuracy. It is also 
worth noting that the area under the receiver operating characteristics (ROC) curve and the area 
under the precision-recall curve are the only metrics supported by the Python implementation of 
cross-validation in Spark for binary classification. In addition to the area under the precision-recall 
curve, the F1 score was used to compare the resulting models. The F1 score is a composite metric 
derived from precision and recall and is the harmonic mean of precision and recall. A higher value 
indicates a better performing model. An F1 score gives equal weight to, and thus balances, 
precision and recall. Precision and recall were also calculated along with accuracy. F1 score, 
precision, recall, area under the ROC curve, and accuracy were calculated on the entire training set, 
while the area under the precision-recall curve was calculated and averaged across the ten training 
folds that resulted from the ten-fold cross-validation algorithm. This means that the metrics 
calculated on the entire training dataset differ compared to those calculated on the folds. However, 
they are still useful for comparisons between different algorithms. 

𝑝𝑝𝑟𝑟𝑙𝑙𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡+𝑓𝑓𝑓𝑓𝑓𝑓𝑝𝑝𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡

  𝑟𝑟𝑙𝑙𝑝𝑝𝑟𝑟𝑙𝑙𝑙𝑙 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡+𝑓𝑓𝑓𝑓𝑓𝑓𝑝𝑝𝑡𝑡 𝑛𝑛𝑡𝑡𝑛𝑛𝑓𝑓𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡

 

E. Results 

Six different decision trees were constructed from the different feature sets in table A3 of the annex. 
Table 2 highlights the decision tree metrics for each created model. The results show that the area 
under the precision-recall curve changes by a negligible amount between each feature set while the 
F1 score remains unchanged. Decision trees adding or removing the complementary road features 
extracted from OSM did not affect the model’s performance. The slight variation found in other 
metrics, namely, the area under the precision-recall curve and the area under the ROC curve,  
can be attributed to the calculation methods rather than the model’s performance. More  
complex models were constructed and tuned to try and achieve better performance and to see  



20 

if the lack of improvement is due to the fact that the added features do not provide additional useful 
information for the model, or that the model itself was unable to capture the complexity of the data. 

Table 2. Decision tree model details and metrics 
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1a 0.6642737 3 15 17 216 8 483 12 124 3 391 0.6235502 0.7144181 0.4116562 0.5223361 0.651076 

1b 0.6638445 3 15 17 216 8 483 12 124 3 391 0.6235502 0.7144181 0.4116562 0.5223361 0.651028 

2a 0.6642737 3 15 17 216 8 483 12 124 3 391 0.6235502 0.7144181 0.4116562 0.5223361 0.651076 

2b 0.6638445 3 15 17 216 8 483 12 124 3 391 0.6235502 0.7144181 0.4116562 0.5223361 0.651028 

3a 0.6642737 3 15 17 216 8 483 12 124 3 391 0.6235502 0.7144181 0.4116562 0.5223361 0.651075 

3b 0.6638445 3 15 17 216 8 483 12 124 3 391 0.6235502 0.7144181 0.4116562 0.5223361 0.651028 

Source: Data compiled by ESCWA. 

Gradient boosted trees were trained for all six training sets with ten-fold cross-validation to select 
the proper hyperparameters. Table 3 details the resulting metrics for each model. With a maximum 
area under the precision-recall curve of 0.71037, gradient boosted trees outperform even the best 
performing decision tree model that scored an area of 0.651076. In fact, gradient boosted trees 
outperformed regular decision trees on almost all the metrics. A deeper dive reveals the reason, 
namely that decision trees outperformed gradient boosted trees in precision (maximum scores of 
0.714418 versus 0.696089). Given all the positive predictions made by decision trees, the rate of 
correct positive predictions given all positive predictions was better than by gradient boosted trees. 
When it came to recall, however, and given all positive labels in the dataset, decision trees had a 
harder time correctly predicting them with a max score of 0.411656 compared to gradient boosted 
trees with a max score of 0.653322. The area under the precision-recall curve varied slightly across 
the different feature sets with a minimum of 0.709846 and a maximum of 0.71037. Other metrics, 
however, showed more pronounced variations. The F1 score increased from 0.661028 for the model 
trained on feature set 1b to 0.670468 for feature set 2b with a minimum F1 score across all models 
of 0.649674. Additionally, the area under the ROC curve increased from feature set 1b with a value 
of 0.740586 to feature set 2b with a value of 0.747752. Both F1 score and area under the ROC curve 
are at their maximum value when calculated on the model trained on feature set 2b. Feature set 1b 
does not contain any complementary data on road segments that were extracted from OSM, while 
feature set 1b contains complementary data of roads assigned through nearest distance with 
modifications. As a result, gradient boosted trees had a better ability to predict severe or fatal 
injuries compared to decision trees, but that added performance comes at a tradeoff regarding 
precision. Feature sets seem to influence, to a certain degree, the performance of the models. 
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Table 3. Gradient boosted trees model details and metrics 
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1a 0.73961 14 595 13 111 7 496 6 012 0.672247 0.685614 0.63624 0.660005 0.71037 

1b 0.740586 14 618 13 130 7 477 5 989 0.673266 0.686751 0.637162 0.661028 0.710245 

2a 0.726816 14 381 12 910 7 697 6 226 0.662178 0.674645 0.626486 0.649674 0.710322 

2b 0.747752 14 517 13 463 7 144 6 090 0.678896 0.688539 0.653322 0.670468 0.709846 

3a 0.747441 14 895 13 083 7 524 5 712 0.678847 0.696089 0.634881 0.664078 0.710289 

3b 0.742297 14 585 13 135 7 472 6 022 0.672587 0.68565 0.637405 0.660648 0.710008 

Source: Data compiled by ESCWA. 

Random forests were also trained for all six training sets with ten-fold cross-validation. Table 4 
highlights their key metrics. Their area under the precision-recall curve is lower than that of gradient 
boosted trees. They scored a maximum of 0.675266 compared to gradient boosted trees that scored 
0.71037. However, random forests seem to outperform gradient boosted trees in the F1 score, with 
a maximum of 0.708988 compared to 0.670468, and in the area under the ROC curve, with a max 
score of 0.802207 compared to 0.747752. Both metrics were calculated on the training set as a whole 
rather than averaged across the ten folds. With random forest models, the best performance in F1 
and area under the ROC curve metrics were found for feature set 3b (0.708988 and 0.802207, 
respectively), while the best performance of area under the precision-recall curve was found 
for feature set 2a. This may indicate that the added complementary data do influence the 
trained models. 

Table 4. Random forest model details and metrics 
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1a 0.78448656 15 646 13 239 7 368 4 961 0.700854079 0.727417582 0.642451594 0.682299585 0.674535107 

1b 0.78068293 15 451 13 386 7 221 5 156 0.699689426 0.721928595 0.649585092 0.683848885 0.674331855 

2a 0.79984082 15 949 13 376 7 231 4 658 0.711530063 0.741710103 0.64909982 0.692321627 0.675266114 

2b 0.801638367 15 791 13 488 7 119 4 816 0.710413937 0.736888112 0.654534867 0.693274395 0.675164656 

3a 0.801791074 15 993 13 553 7 054 4 614 0.716892318 0.746023009 0.657689135 0.699076701 0.672177283 

3b 0.802207268 15 468 14 139 6 468 5 139 0.718372398 0.733426704 0.686126074 0.708988341 0.672498673 

Source: Data compiled by ESCWA. 
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All three models generate feature importance scores. These scores identify which features were 
more important for predicting the target. For each model type and feature set, the features were 
sorted from highest to lowest importance. Tables A4, A5, and A6 in the annex highlight the top 15 
features (out of 24 for feature sets 1a and 1b, and out of 36 for the rest) for each model. Features 
that have 0 importance, based on model scores, were dropped from the tables. Decision trees seem 
to value almost the same features regardless of the feature set inputted. Gradient boosted trees 
showed slight improvements when shifting to feature sets with the added road features, but the top 
15 features do not include any of these features. Random forests, however, seem to value the added 
road features more as they rank within the top 9 to top 15 features that the models deem important. 

F. Discussion 

The decision tree models did not benefit from the new features introduced by OSM shapefiles as 
seen in the results. OSM data was added to feature sets 2 and 3. Models built on feature sets 2a,1a 
and 3a have the same metrics even though 2a and 3a contain additional OSM features. The lack of 
variation in the metrics indicates that the features added did not have any impact on the model 
performance. This is further evident when examining the decision tree (figure 7). No leaf node 
includes any of the OSM features including the feature engineered curvatures. This, however, does 
not indicate that the added data were useless. More complex algorithms did show variation 
between different feature sets. Some metrics varied slightly while others had more significant 
changes. Random Forest models had the most improvement when the OSM features were added, 
while gradient boosted trees had less pronounced improvement. This could indicate that road 
features extracted from OSM can influence the analysis of injury severity. However, the results 
found here are only the first step, and several methods can be used to further boost performance. 
Different sampling techniques can be tested and evaluated to see how they perform. Additionally, 
different implementations of the same model can result in different performance because each 
implementation uses different underlying algorithms and techniques to create a specific model. 
For example, scikit-learn implementation of decision trees can be compared to Spark’s 
implementation. Other machine learning models can also be tested. For instance, extreme gradient 
boosting can be trained and evaluated to compare its performance to that of the above models. 

One advantage of decision trees compared to other algorithms is their ability to display trees that 
denote the step-by-step logic followed to arrive at a certain prediction. These trees can be used to 
predict the outcome of a certain scenario and can be analysed to better understand the underlying 
patterns within the dataset itself. Figure 7 highlights the decision tree trained on feature set 2a. The 
tree indicates that drivers, riders and passengers in vehicles that did not leave the carriageway 
(perhaps indicating a higher travel speed or no attempt at swerving) are likely to suffer from severe 
or fatal injuries. This is an example of an insight that can prompt further investigation into this 
scenario. Better performing trees can provide higher-quality insights. Several steps can be taken to 
improve the decision tree model’s performance. These include adding more features, more 
aggressive hyperparameter tuning, experimenting with different implementations of the algorithm, 
and experimenting with other techniques to balance out the classes. 
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Figure 7. Decision tree trained on feature set 2a 

 
Source: Data compiled by ESCWA. 

Bridging the gap between data science and official statistics requires merging the experimental 
nature of data science with the rigor required to create reliable statistics. Additional work is needed 
to add robustness to the above results. The models need to be tested on several samples from 
different urban locations within the United Kingdom and compared. Furthermore, the models need 
to be evaluated using an imbalanced evaluation dataset to get results closer to the real-world 
performance. Finally, as new data is created, the models need to be evaluated and retrained to see 
if their previous results still hold. These are some of the steps that can improve the robustness of 
the results and provide insights that are well tested and more reliable than traditional data 
science projects. 
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IV. Conclusion 

Several lessons were learned from attempting complementary data analyses in the Arab region and 
from conducting the related data analytics illustrative exercise applied to data from the United 
Kingdom. While complementary data can supplement official data, the limitations are usually either 
prohibitive costs or limited data access. Private companies want to recoup their costs and profit 
from their data while government agencies are reluctant to share their data. Due to these 
limitations, data within the region were not accessible. As a result, sample analysis was conducted 
on the United Kingdom car crash dataset to showcase how data analysis can be improved by 
complementing official transport data with data extracted from complementary data sources and 
explain the possibilities which machine learning can provide to support decision making. To that 
end, geospatial street data were processed to extract curvatures and were incorporated into the 
machine learning model. The extraction and use of road curvature data for machine learning in the 
field of road safety are relatively novel, with very few existing cases. 

Key lessons and takeaways were demonstrated in the United Kingdom car crash data analysis. First, 
decision tree outputs can be very useful for decision makers. This paper highlights how decision 
trees can provide valuable logic behind its predictions, including which features it deems important 
for its own decision-making and thus providing more useful insights compared to “black box” 
models. Second, the process of building a good quality model is not straightforward and requires 
constant tweaking to achieve good results. Third, good results are not always guaranteed, 
especially on the first iteration of the model building process. Constant iteration and tweaking are 
required to achieve more usable results. Finally, machine learning is a more experimental approach 
to dealing with data compared to more established methods employed in official statistics. As a 
result, procedures and processes must be put into place to ensure that the results from the machine 
learning model are robust and reliable for official statistics purposes. 

The following recommendations could be drawn from the findings of this paper: 

1. Establish or strengthen linkages between governmental entities, and maintain them properly to 
allow data sharing and transparency. 

2. Establish a team to experiment with the use of machine learning and unconventional data in 
different fields to better understand the potential benefits and how to best employ them. 

3. Redesign the onsite crash data collection tools and improve police training related to the 
recording of car crash data and to include road-related data as much as possible, to improve car 
crash analysis. 
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Annex 
Data features 

Table A1.  United Kingdom data features and their description 

All dataset features Description 

‘Casualty_Class’, Casualty is a driver, passenger or pedestrian 

‘Sex_of_Casualty’, Gender of casualty 

‘Age_of_Casualty’, Age of casualty 

‘Age_Band_of_Casualty’, Age of casualty binned into a range 

‘Casualty_Severity’, Casualty injury severity  

‘Pedestrian_Location’, If the casualty was a pedestrian where were they located 

‘Pedestrian_Movement’, If the casualty was a pedestrian how were they moving on the road 

‘Car_Passenger’, If the casualty was a passenger where were they seated 

‘Bus_or_Coach_Passenger’, If the casualty was a bus or coach passenger, where were they 
positioned 

‘Vehicle_Type’, Type of vehicle  

‘Vehicle_Manoeuvre’, What maneuver was the vehicle doing before the crash 

‘Junction_Location’, Identifies the location of a vehicle compared to a junction. A junction 
is considered when the vehicle is within 20 metres of it. 

‘Skidding_and_Overturning’, If the vehicle skidded, overturned, or did something similar 

‘Hit_Object_in_Carriageway’, Identifies what object the vehicle hit on the carriageway, if any 

‘Vehicle_Leaving_Carriageway’, Identifies the position of the vehicle as it was leaving the 
carriageway 

‘Hit_Object_off_Carriageway’, Identifies what object the vehicle hit off the carriageway, if any 

‘1st_Point_of_Impact’, Identifies the first point of impact 

‘Sex_of_Driver’, Gender of driver 

‘Road_Type’, Type of road 

‘Speed_Limit’, Speed limit of the road 

‘Junction_Detail’, Describes the type of junction within 20 metres to the vehicle 

‘Pedestrian_Crossing-Physical_Facilities’, Identifies the type of crossing facilities, if any 
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All dataset features Description 

‘Light_Conditions’, Identifies the light conditions during the crash 

‘Weather_Conditions’, Identifies the weather conditions during the crash 

‘Road_Surface_Conditions’, Identifies the condition of the road surface during the crash 

‘Did_Police_Officer_Attend_Scene_of_Accident’, Refers to whether the police attended the scene of the accident 

Source: Data compiled by ESCWA. 

Table A2.  OpenStreetMap features and their description 

OpenStreetMap features Description 

‘oneway’, If the road is one or two ways  

‘maxspeed’, Road speed limit 

‘bridge’, If the road contains a bridge 

‘tunnel’, If the road contains a tunnel 

‘oneway_proximity’, If the road is one way or not assigned based on the closest road to 
the crash site 

‘maxspeed_proximity’, Road speed limit assigned based on the closest road to the crash 
site 

‘bridge_proximity’, If the road contains a bridge assigned based on the closest road to 
the crash site 

‘tunnel_proximity’, If the road contains a tunnel assigned based on the closest road to 
the crash site 

‘max_change_10’, Maximum sinuosity calculated every ten metres 

‘min_change_10’, Minimum sinuosity calculated every ten metres 

‘max_min_range_10’, Difference between max_change_10 and min_change 10 

‘average_change_10’, Arithmetic mean of the sinuosity calculated every ten metres 

‘max_change_5’, Maximum sinuosity calculated every five metres 

‘min_change_5’, Minimum sinuosity calculated every five metres 

‘max_min_range_5’, Difference between max_change_5 and min_change_5 

‘average_change_5’, Arithmetic mean of the sinuosity calculated every five metres 

‘max_change_proximity_10’, Maximum sinuosity calculated every ten metres assigned based on 
the closest road to the crash site 

‘min_change_proximity_10’, Minimum sinuosity calculated every ten metres assigned based on 
the closest road to the crash site 

‘max_min_range_proximity_10’, Difference between max_change_10 and min_change_5 assigned 
based on the closest road to the crash site 
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OpenStreetMap features Description 

‘average_change_proximity_10’, Arithmetic mean of the sinuosity calculated every ten metres 
assigned based on the closest road to the crash site 

‘max_change_proximity_5’, Maximum sinuosity calculated every five metres assigned based on 
the closest road to the crash site 

‘min_change_proximity_5’, Minimum sinuosity calculated every five metres assigned based on 
the closest road to the crash site 

‘max_min_range_proximity_5’, Difference between max_change_5 and min_change_5 assigned 
based on the closest road to the crash site 

‘average_change_proximity_5’, Arithmetic mean of the sinuosity calculated every five metres 
assigned based on the closest road to the crash site 

‘overall_sinuosity’, Sinuosity calculated on the entire road segment. If the road was fully 
connected (oval, circle, etc.), then the road is divided in half and the 
sinuosity averaged for both halves. 

‘overall_sinuosity_proximity’ Sinuosity calculated on the entire road segment. If the road was fully 
connected (oval, circle, etc.), then the road is divided in half and the 
sinuosity averaged for both halves. The closest road to the crash site 
was used. 

Source: Data compiled by ESCWA. 
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Table A3.  Set of features selected as input into a machine learning algorithm 

Feature set 1a Feature set 1b Feature set 2a Feature set 2b Feature set 3a Feature set 3b 

‘Casualty_Class’, ‘Casualty_Class’, ‘Casualty_Class’, ‘Casualty_Class’, ‘Casualty_Class’, ‘Casualty_Class’, 

‘Sex_of_Casualty’, ‘Sex_of_Casualty’, ‘Sex_of_Casualty’, ‘Sex_of_Casualty’, ‘Sex_of_Casualty’, ‘Sex_of_Casualty’, 

‘Age_of_Casualty’, ‘Age_Band_of_Casualty’, ‘Age_of_Casualty’, ‘Age_Band_of_Casualty’, ‘Age_of_Casualty’, ‘Age_Band_of_Casualty’, 

‘Pedestrian_Location’, ‘Pedestrian_Location’, ‘Pedestrian_Location’, ‘Pedestrian_Location’, ‘Pedestrian_Location’, ‘Pedestrian_Location’, 

‘Pedestrian_Movement’, ‘Pedestrian_Movement’, ‘Pedestrian_Movement’, ‘Pedestrian_Movement’, ‘Pedestrian_Movement’, ‘Pedestrian_Movement’, 

‘Car_Passenger’, ‘Car_Passenger’, ‘Car_Passenger’, ‘Car_Passenger’, ‘Car_Passenger’, ‘Car_Passenger’, 

‘Bus_or_Coach_Passenge
r’, 

‘Bus_or_Coach_Passenge
r’, 

‘Bus_or_Coach_Passenge
r’, 

‘Bus_or_Coach_Passenge
r’, 

‘Bus_or_Coach_Passenge
r’, 

‘Bus_or_Coach_Passenge
r’, 

‘Vehicle_Type’, ‘Vehicle_Type’, ‘Vehicle_Type’, ‘Vehicle_Type’, ‘Vehicle_Type’, ‘Vehicle_Type’, 

‘Vehicle_Manoeuvre’, ‘Vehicle_Manoeuvre’, ‘Vehicle_Manoeuvre’, ‘Vehicle_Manoeuvre’, ‘Vehicle_Manoeuvre’, ‘Vehicle_Manoeuvre’, 

‘Junction_Location’, ‘Junction_Location’, ‘Junction_Location’, ‘Junction_Location’, ‘Junction_Location’, ‘Junction_Location’, 

‘Skidding_and_Overturnin
g’, 

‘Skidding_and_Overturnin
g’, 

‘Skidding_and_Overturnin
g’, 

‘Skidding_and_Overturnin
g’, 

‘Skidding_and_Overturnin
g’, 

‘Skidding_and_Overturnin
g’, 

‘Hit_Object_in_Carriagew
ay’, 

‘Hit_Object_in_Carriagew
ay’, 

‘Hit_Object_in_Carriagewa
y’, 

‘Hit_Object_in_Carriagewa
y’, 

‘Hit_Object_in_Carriagewa
y’, 

‘Hit_Object_in_Carriagewa
y’, 

‘Vehicle_Leaving_Carriag
eway’, 

‘Vehicle_Leaving_Carriag
eway’, 

‘Vehicle_Leaving_Carriage
way’, 

‘Vehicle_Leaving_Carriage
way’, 

‘Vehicle_Leaving_Carriage
way’, 

‘Vehicle_Leaving_Carriage
way’, 

‘Hit_Object_off_Carriagew
ay’, 

‘Hit_Object_off_Carriagew
ay’, 

‘Hit_Object_off_Carriagew
ay’, 

‘Hit_Object_off_Carriagew
ay’, 

‘Hit_Object_off_Carriagew
ay’, 

‘Hit_Object_off_Carriagew
ay’, 

‘1st_Point_of_Impact’, ‘1st_Point_of_Impact’, ‘1st_Point_of_Impact’, ‘1st_Point_of_Impact’, ‘1st_Point_of_Impact’, ‘1st_Point_of_Impact’, 

‘Sex_of_Driver’, ‘Sex_of_Driver’, ‘Sex_of_Driver’, ‘Sex_of_Driver’, ‘Sex_of_Driver’, ‘Sex_of_Driver’, 

‘Road_Type’, ‘Road_Type’, ‘Road_Type’, ‘Road_Type’, ‘Road_Type’, ‘Road_Type’, 

‘Speed_limit’, ‘Speed_limit’, ‘Speed_limit’, ‘Speed_limit’, ‘Speed_limit’, ‘Speed_limit’, 

‘Junction_Detail’, ‘Junction_Detail’, ‘Junction_Detail’, ‘Junction_Detail’, ‘Junction_Detail’, ‘Junction_Detail’, 
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Feature set 1a Feature set 1b Feature set 2a Feature set 2b Feature set 3a Feature set 3b 

‘Pedestrian_Crossing-
Physical_Facilities’, 

‘Pedestrian_Crossing-
Physical_Facilities’, 

‘Pedestrian_Crossing-
Physical_Facilities’, 

‘Pedestrian_Crossing-
Physical_Facilities’, 

‘Pedestrian_Crossing-
Physical_Facilities’, 

‘Pedestrian_Crossing-
Physical_Facilities’, 

‘Light_Conditions’, ‘Light_Conditions’, ‘Light_Conditions’, ‘Light_Conditions’, ‘Light_Conditions’, ‘Light_Conditions’, 

‘Weather_Conditions’, ‘Weather_Conditions’, ‘Weather_Conditions’, ‘Weather_Conditions’, ‘Weather_Conditions’, ‘Weather_Conditions’, 

‘Road_Surface_Conditions
’, 

‘Road_Surface_Conditions’, ‘Road_Surface_Conditions’, ‘Road_Surface_Conditions’, ‘Road_Surface_Conditions’, ‘Road_Surface_Conditions’, 

‘Did_Police_Officer_Atten
d_Scene_of_Accident’ 

‘Did_Police_Officer_Atten
d_Scene_of_Accident’ 

‘Did_Police_Officer_Atten
d_Scene_of_Accident’, 

‘Did_Police_Officer_Atten
d_Scene_of_Accident’, 

‘Did_Police_Officer_Atten
d_Scene_of_Accident’, 

‘Did_Police_Officer_Atten
d_Scene_of_Accident’, 

  
‘oneway’, ‘oneway’, ‘oneway_proximity’, ‘oneway_proximity’, 

  
‘bridge’, ‘bridge’, ‘bridge_proximity’, ‘bridge_proximity’, 

  
‘tunnel’, ‘tunnel’, ‘tunnel_proximity’, ‘tunnel_proximity’, 

  
‘max_change_10’, ‘max_change_10’, ‘max_change_proximity_1

0’, 
‘max_change_proximity_1
0’, 

  
‘min_change_10’, ‘min_change_10’, ‘min_change_proximity_10

’, 
‘min_change_proximity_10
’, 

  
‘max_min_range_10’, ‘max_min_range_10’, ‘max_min_range_proximity

_10’, 
‘max_min_range_proximity
_10’, 

  
‘average_change_10’, ‘average_change_10’, ‘average_change_proximit

y_10’, 
‘average_change_proximit
y_10’, 

  
‘max_change_5’, ‘max_change_5’, ‘max_change_proximity_5’

, 
‘max_change_proximity_5’
, 

  
‘min_change_5’, ‘min_change_5’, ‘min_change_proximity_5’, ‘min_change_proximity_5’, 

  
‘max_min_range_5’, ‘max_min_range_5’, ‘max_min_range_proximity

_5’, 
‘max_min_range_proximity
_5’, 

  
‘average_change_5’, ‘average_change_5’, ‘average_change_proximit

y_5’, 
‘average_change_proximit
y_5’, 

  
‘overall_sinuosity’ ‘overall_sinuosity’ ‘overall_sinuosity_proximity’ ‘overall_sinuosity_proximity’ 

Source: Data compiled by ESCWA. 
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Table A4.  Top 15 features ranked by decision tree 

Rank Feature 1a Feature 1b Feature 2a Feature 2b Feature 3a Feature 3b 

1 Casualty_Class 
Index 

Casualty_ClassI Index Casualty_Class 
Index 

Casualty_ClassI Index Casualty_Class Index Casualty_ClassI Index 

2 Vehicle_TypeI 
Index 

Vehicle_Type Index Vehicle_Type 
Index 

Vehicle_Type Index Vehicle_Type Index Vehicle_Type Index 

3 Vehicle_Leaving_
Carriageway 
Index 

Vehicle_Leaving_Carriage
way Index 

Vehicle_Leaving_
Carriageway 
Index 

Vehicle_Leaving_Carriage
way Index 

Vehicle_Leaving_Car
riageway Index 

Vehicle_Leaving_Carriage
way Index 

4 Age_of_Casualty Light_Conditions Index Age_of_Casualty Light_Conditions Index Age_of_Casualty Light_Conditions Index 

5 Light_Conditions 
Index 

Age_Band_of_Casualty 
Index 

Light_Conditions 
Index 

Age_Band_of_Casualty 
Index 

Light_Conditions 
Index 

Age_Band_of_Casualty 
Index 

6 Pedestrian_Locati
on Index 

Pedestrian_Crossing - 
Physical_Facilities Index 

Pedestrian_Locat
ion Index 

Pedestrian_Crossing - 
Physical_Facilities Index 

Pedestrian_Location 
Index 

Pedestrian_Crossing - 
Physical_Facilities Index 

7 
      

8 
      

9 
      

10 
      

11 
      

12 
      

13 
      

14 
      

15 
      

Source: Data compiled by ESCWA. 
Note: Random forest algorithm only selected relatively the same six features regardless of the feature set provided as input. 
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Table A5.  Top 15 features ranked by gradient boosted trees 

Rank Feature 1a Feature 1b Feature 2a Feature 2b Feature 3a Feature 3b 

1 Vehicle_Type 
Index 

Vehicle_Type Index Vehicle_Type Index Vehicle_Type Index Vehicle_Type Index Vehicle_Manoeuvre 
Index 

2 Vehicle_Manoeuv
re Index 

Vehicle_Manoeuvre 
Index 

Vehicle_Manoeuvre 
Index 

Vehicle_Manoeuvre 
Index 

Vehicle_Manoeuvre 
Index 

Vehicle_Type Index 

3 Age_of_Casualty Age_Band_of_Casualty 
Index 

Age_of_Casualty Age_Band_of_Casualty 
Index 

1st_Point_of_Impact 
Index 

Age_Band_of_Casualty 
Index 

4 Junction_Location 
Index 

1st_Point_of_Impact 
Index 

1st_Point_of_Impact 
Index 

1st_Point_of_Impact 
Index 

Age_of_Casualty 1st_Point_of_Impact 
Index 

5 Junction_Detail 
Index 

Hit_Object_off_Carriage
way Index 

Skidding_and_Overturni
ng Index 

Junction_Location 
Index 

Hit_Object_off_Carriage
way Index 

Hit_Object_off_Carriage
way Index 

6 Pedestrian_Locati
on Index 

Junction_Detail Index Did_Police_Officer_Atte
nd_Scene_of_Accident 
Index 

Junction_Detail Index Junction_Detail Index Junction_Detail Index 

7 Hit_Object_off_Ca
rriageway Index 

Junction_Location 
Index 

Hit_Object_off_Carriage
way Index 

Vehicle_Leaving_Carria
geway Index 

Junction_Location 
Index 

Skidding_and_Overturni
ng Index 

8 1st_Point_of_Imp
act Index 

Skidding_and_Overturni
ng Index 

Junction_Detail Index Skidding_and_Overturni
ng Index 

Pedestrian_Location 
Index 

Pedestrian_Location 
Index 

9 Vehicle_Leaving_
Carriageway 
Index 

Did_Police_Officer_Atte
nd_Scene_of_Accident 
Index 

Vehicle_Leaving_Carria
geway Index 

Hit_Object_off_Carriage
way Index 

Skidding_and_Overturni
ng Index 

Did_Police_Officer_Atte
nd_Scene_of_Accident 
Index 

10 Pedestrian_Move
ment Index 

Hit_Object_in_Carriage
way Index 

Light_Conditions Index Weather_Conditions 
Index 

Vehicle_Leaving_Carria
geway Index 

Junction_Location 
Index 

11 Did_Police_Office
r_Attend_Scene_
of_Accident Index 

Pedestrian_Movement 
Index 

Pedestrian_Location 
Index 

Pedestrian_Movement 
Index 

Hit_Object_in_Carriage
way Index 

Hit_Object_in_Carriage
way Index 

12 Skidding_and_Ov
erturning Index 

Vehicle_Leaving_Carria
geway Index 

Hit_Object_in_Carriage
way Index 

Pedestrian_Location 
Index 

Weather_Conditions 
Index 

Pedestrian_Movement 
Index 
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Rank Feature 1a Feature 1b Feature 2a Feature 2b Feature 3a Feature 3b 

13 Hit_Object_in_Car
riageway Index 

Pedestrian_Location 
Index 

Junction_Location 
Index 

Hit_Object_in_Carriage
way Index 

Did_Police_Officer_Atte
nd_Scene_of_Accident 
Index 

Vehicle_Leaving_Carria
geway Index 

14 Weather_Conditio
ns Index 

Weather_Conditions 
Index 

Speed_limit Did_Police_Officer_Atte
nd_Scene_of_Accident 
Index 

Pedestrian_Movement 
Index 

Weather_Conditions 
Index 

15 Light_Conditions 
Index 

Light_Conditions 
Index 

Casualty_Class Index Light_Conditions 
Index 

Light_Conditions 
Index 

Road_Type Index 

Source: Data compiled by ESCWA. 
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Table A6.  Top 15 features ranked by random forest 

Rank Feature 1a Feature 1b Feature 2a Feature 2b Feature 3a Feature 3b 

1 Vehicle_Type Index Vehicle_Type Index Vehicle_Type ndex Vehicle_Type 
Index 

Vehicle_Type Index Vehicle_Type Index 

2 Pedestrian_Movement Index First_Point_of_Impact Index Pedestrian_Move
ment Index 

Pedestrian_Move
ment Index 

Pedestrian_Movem
ent Index 

Pedestrian_Movem
ent Index 

3 First_Point_of_Impact Index Pedestrian_Movement Index Casualty_Class 
Index 

Casualty_Class 
Index 

Casualty_Class 
Index 

Vehicle_Manoeuvre 
Index 

4 Age_of_Casualty Casualty_Class Index Vehicle_Manoeuvr
e Index 

Vehicle_Manoeuvr
e Index 

Vehicle_Manoeuvre 
Index 

Casualty_Class 
Index 

5 Casualty_Class Index Pedestrian_Location Index 1st_Point_of_Impa
ct Index 

Age_Band_of_Cas
ualty Index 

1st_Point_of_Impac
t Index 

Age_Band_of_Casu
alty Index 

6 Vehicle_Manoeuvre Index Age_Band_of_Casualty Index Pedestrian_Locati
on Index 

1st_Point_of_Impa
ct Index 

Age_of_Casualty 1st_Point_of_Impact 
Index 

7 Pedestrian_Location Index Vehicle_Manoeuvre Index Age_of_Casualty Pedestrian_Locati
on Index 

Pedestrian_Locatio
n Index 

Pedestrian_Location 
Index 

8 Vehicle_Leaving_Carriageway 
Index 

Vehicle_Leaving_Carriageway 
Index 

Skidding_and_Ove
rturning Index 

Skidding_and_Ove
rturning Index 

Hit_Object_off_Carr
iageway Index 

Skidding_and_Overt
urning Index 

9 Junction_Location Index Junction_Location Index Hit_Object_off_Ca
rriageway Index 

Hit_Object_off_Ca
rriageway Index 

Skidding_and_Overt
urning Index 

Overall_sinuosity_pr
oximity 

10 Skidding_and_Overturning 
Index 

Skidding_and_Overturning 
Index 

Overall_sinuosity Overall_sinuosity Hit_Object_in_Carri
ageway Index 

Hit_Object_in_Carri
ageway Index 

11 Hit_Object_in_Carriageway 
Index 

Hit_Object_in_Carriageway 
Index 

Average_change_5 Average_change_5 Overall_sinuosity_p
roximity 

Junction_Location 
Index 

12 Junction_Detail Index Junction_Detail Index Hit_Object_in_Car
riageway Index 

Max_min_range_1
0 

Junction_Location 
Index 

Hit_Object_off_Carri
ageway Index 

13 Hit_Object_off_Carriageway 
Index 

Hit_Object_off_Carriageway 
Index 

Junction_Location 
Index 

Hit_Object_in_Car
riageway Index 

Vehicle_Leaving_Ca
rriageway Index 

Max_min_range_pr
oximity_10 
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Rank Feature 1a Feature 1b Feature 2a Feature 2b Feature 3a Feature 3b 

14 Did_Police_Officer_Attend_Sce
ne_of_Accident Index 

Did_Police_Officer_Attend_Sce
ne_of_Accident Index 

Average_change_
10 

Junction_Location 
Index 

Max_min_range_pr
oximity_10 

Average_change_pr
oximity_5 

15 Light_Conditions Index Light_Conditions Index Max_min_range_1
0 

Average_change_
10 

Average_change_p
roximity_5 

Average_change_pr
oximity_10 

Source: Data compiled by ESCWA.
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